Skip to main content
Log in

Characterization and health risk assessment of size-segregated fungal bioaerosols in and around a sugar mill in India

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Suspended particles of biological origin comprising of virus, fragments of plants and animals dander, pollen grains, fungal spores and bacteria known as bioaerosols have become a major concern in the past decades. In the present study reports, the concentration and size distribution of fungal bioaerosol in and around a sugar mill situated in the Muzaffarnagar region of Uttar Pradesh, India, are presented. The sampling was performed in the winter when the mill used to be in the operational mode. The highest mean fungal concentration was observed at the cutter site (4022 ± 321 cfu/m3) and lowest at storage site (832 ± 85 cfu/m3). The maximum and minimum concentration of fungal bioaerosol was observed during January (3090 ± 174 cfu/m3) and March (629 ± 69 cfu/m3) respectively. During the entire sampling period, the fine fraction of fungal bioaerosol was observed to be significantly higher at all the sites, whereas coarse fraction was lower. The association between fine and coarse fractions of bioaerosols showed a very strong positive relationship. The levels of fungal bioaerosol and their association with the meteorological parameters in sugar mill were also conducted. A positive association with the relative humidity and wind speed was observed at significance level of p < 0.05, whereas a negative relation was observed with temperature at p < 0.05. The lifetime average daily dose was calculated for both inhalation and dermal; among them LADDinhalation is ~ 5 times over LADDdermal. The health risk index was observed as < 1 for both inhalation and dermal routes, whereas HIinhalation value was 105 times higher than the HIdermal value. The dominant fungi genera found in the air of examined dwellings were Penicillium spp., Aspergillus spp., Cladosporium spp., and Alternaria spp., which occurred predominantly at all of the studied sites during the sampling period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal, S., Mandal, P., & Srivastava, A. (2016). Quantification and characterization of size-segregated bioaerosols at municipal solid waste dumping site in Delhi. Procedia Environmental Sciences, 35, 400–407.

    Article  CAS  Google Scholar 

  • Araujo, R., & Cabral, J. P. (2010). Fungal air quality in medical protected environments. Air Quality, 357, 382.

    Google Scholar 

  • Awad, A. H. A., Saeed, Y., Shakour, A. A., Abdellatif, N. M., Ibrahim, Y. H., Elghanam, M., & Elwakeel, F. (2020). Indoor air fungal pollution of a historical museum, Egypt: A case study. Aerobiologia, 36(2), 197–209.

    Article  Google Scholar 

  • Baghani, N. A., Sorooshian, A., Delikhoon, M., Nabizadeh, R., Nazmara, S., & Bakhtiari, R. (2021). Pollution characteristics and noncarcinogenic risk assessment of fungal bioaerosol in different processing units of waste paper and cardboard recycling factory. Toxin Reviews, 40(4), 752–763.

    Article  Google Scholar 

  • Balajee, S. A., Borman, A. M., Brandt, M. E., Cano, J., Cuenca-Estrella, M., Dannaoui, E., et al. (2009). Sequence-based identification of Aspergillus, Fusarium, and Mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? Journal of Clinical Microbiology, 47(4), 877–884.

    Article  CAS  PubMed  Google Scholar 

  • Balyan, P., Ghosh, C., Das, S., & Banerjee, B. D. (2020). Spatio-temporal characterisation of bioaerosols at diverse outdoor land-use sites in an urban environment. Aerobiologia, 36, 77–81.

    Article  Google Scholar 

  • Bengal, R. (1995). Rose Bengal chloramphenicol (RBC) agar. Progress in Industrial Microbiology, 34, 431–433.

    Article  Google Scholar 

  • Cangialosi, F., Intini, G., Liberti, L., Notarnicola, M., & Stellacci, P. (2008). Health risk assessment of air emissions from a municipal solid waste incineration plant—A case study. Waste Management, 28(5), 885–895.

    Article  CAS  PubMed  Google Scholar 

  • Carlander, A., Schönning, C., & Stenström, T. A. (2009). Energy forest irrigated with wastewater: A comparative microbial risk assessment. Journal of Water and Health, 7(3), 413–433.

    Article  CAS  PubMed  Google Scholar 

  • De Hoog, G. S., Guarro, J., Gene, G., & Figueiras, M. (2000). Atlas of clinical fungi (2nd ed.). Cenraalbureau voor Schimmelcultures.

    Google Scholar 

  • Dehghani, M., Fazlzadeh, M., Sorooshian, A., Tabatabaee, H. R., Miri, M., Baghani, A. N., Delikhoon, M., Mahvi, A. H., & Rashidi, M. (2018). Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicology and Environmental Safety, 155, 133–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, J., Guo, J., Zhou, X., Zhou, P., Fu, X., Zhang, W., & Lin, K. (2014). Hazardous substances in indoor dust emitted from waste TV recycling facility. Environmental Science and Pollution Research, 21(12), 7656–7667.

    Article  CAS  PubMed  Google Scholar 

  • Diba, K., Kordbacheh, P., Mirhendi, S. H., Rezaie, S., & Mahmoudi, M. (2007). Identification of Aspergillus species using morphological characteristics. Pakistan Journal of Medical Sciences, 23(6), 867.

    Google Scholar 

  • Dutkiewicz, J., Cisak, E., Sroka, J., Wójcik-Fatla, A., & Zajac, V. (2011). Biological agents as occupational hazards-selected issues. Annals of Agricultural and Environmental Medicine, 18(2), 286.

    CAS  PubMed  Google Scholar 

  • Faridi, S., Hassanvand, M. S., Naddafi, K., Yunesian, M., Nabizadeh, R., Sowlat, M. H., et al. (2015). Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory. Environmental Science and Pollution Research, 22(11), 8190–8200.

    Article  CAS  PubMed  Google Scholar 

  • Felix, K. T., Kumar, P. N., & Arivarasan, S. (2021). Technical-and-allocative inefficiency index of Indian sugarcane farms—A primal system approach. Environmental and Sustainability Indicators, 11, 100133.

    Article  Google Scholar 

  • Ferguson, R. M., Neath, C. E., Nasir, Z. A., Garcia-Alcega, S., Tyrrel, S., Coulon, F., et al. (2021). Size fractionation of bioaerosol emissions from green-waste composting. Environment International, 147, 106327.

    Article  CAS  PubMed  Google Scholar 

  • Foarde, K., Dulaney, P., Cole, E., VanOsdel, D., Ensor, D., & Chang, J. (1993). Assessment of fungal growth on ceiling tiles under environmentally characterized conditions. Indoor Air, 4, 357–362.

    Google Scholar 

  • Gamero, W. B. M., Ramírez, M. C., Parody, A., Viloria, A., López, M. H. A., & Kamatkar, S. J. (2018). Concentrations and size distributions of fungal bioaerosols in a municipal landfill. In International Conference on Data Mining and Big Data (pp. 244–253). Springer.

  • Ghosh, B., Lal, H., Kushwaha, R., Hazarika, N., Srivastava, A., & Jain, V. K. (2013). Estimation of bioaerosol in indoor environment in the university library of Delhi. Sustainable Environment Research, 23(3), 199–207.

    CAS  Google Scholar 

  • Gomi, K. (2014). Aspergillus oryzae. Elsevier.

    Google Scholar 

  • Gupta, A. D., Srivastava, V., & Gupta, T. (2021). Seasonal bioaerosol load and statistical analysis within different microenvironments of an academic institute situated in the Indo-Gangetic Plain. Aerobiologia, 37(4), 663–680.

    Article  Google Scholar 

  • Hameed, A. A., Khoder, M. I., Yuosra, S., Osman, A. M., & Ghanem, S. (2009). Diurnal distribution of airborne bacteria and fungi in the atmosphere of Helwan area, Egypt. Science of the Total Environment, 407(24), 6217–6222.

    Article  ADS  PubMed  Google Scholar 

  • Hosseini, N., Hajizadeh, Y., Nikaeen, M., & Hatamzadeh, M. (2021). Spatiotemporal variation of ambient bioaerosols in a large and industrialized metropolis of Iran and their association with PM2.5 and meteorological factors. Aerobiologia, 37(1), 105–117.

    Article  Google Scholar 

  • Huang, S.-H., & Chen, C.-C. (2002). Ultrafine aerosol penetration through electrostatic precipitators. Environmental Science and Technology, 36(21), 4625–4632.

    Article  ADS  CAS  PubMed  Google Scholar 

  • INDIA, P. (2011). Census of India 2011 provisional population totals. New Delhi: Office of the Registrar General and Census Commissioner.

  • Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—A review. Science of the Total Environment, 326(1–3), 151–180.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Jothish, P. S., & Nayar, T. S. (2004). Airborne fungal spores in a sawmill environment in Palakkad District, Kerala, India. Aerobiologia, 20(1), 75–81.

    Article  Google Scholar 

  • Kamran, R., & Roghaieh, H. (2015). First report of Neurospora on Corylus avellana in natural forest of Iran. Journal of Yeast and Fungal Research, 6(4), 31–36.

    Article  Google Scholar 

  • Kumar, P., Singh, A. B., & Singh, R. (2021). Seasonal variation and size distribution in the airborne indoor microbial concentration of residential houses in Delhi and its impact on health. Aerobiologia, 37(4), 719–732.

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Lal, H., Ghosh, B., Srivastava, A., & Srivastava, A. (2017). Identification and characterization of size-segregated bioaerosols at different sites in Delhi. Aerosol and Air Quality Research, 17(6), 1570–1581.

    Article  Google Scholar 

  • Larone, D. H. (1995). Medically important fungi. A guide to identification. 1995. QR245, 204–599.

  • Li, Y., Zhang, H., Qiu, X., Zhang, Y., & Wang, H. (2013). Dispersion and risk assessment of bacterial aerosols emitted from rotating-brush aerator during summer in a wastewater treatment plant of Xi’an, China. Aerosol and Air Quality Research, 13(6), 1807–1814.

    Article  Google Scholar 

  • Madhwal, S., Prabhu, V., Sundriyal, S., & Shridhar, V. (2020). Ambient bioaerosol distribution and associated health risks at a high traffic density junction at Dehradun city, India. Environmental Monitoring and Assessment, 192(3), 1–15.

    Article  Google Scholar 

  • Maharia, S., & Srivastava, A. (2015). Influence of seasonal variation on concentration of fungal bioaerosol at a sewage treatment plant (STP) in Delhi. Aerobiologia, 31(2), 249–260.

    Article  Google Scholar 

  • Indian Sugar Manufacturing Assassinations(ISMA) (2021) https://www.indiansugar.com/Statics.aspx

  • Masih, A., Lall, A. S., Taneja, A., & Singhvi, R. (2017). Exposure profiles, seasonal variation and health risk assessment of BTEX in indoor air of homes at different microenvironments of a terai province of northern India. Chemosphere, 176, 8–17.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mentese, S., Otkun, M. T., & Palaz, E. (2017). Comparison of dichloran rose bengal chloramphenicol and Sabouraud dextrose agar with cycloheximide and chloramphenicol for airborne mold sampling. Aerobiologia, 33(2), 211–219.

    Article  Google Scholar 

  • Misra, J. K., & Jamil, Z. (1991). Fungi in the indoor environment of flour mill in Lucknow: Allergic potentialities of some Aspergilli on humans. Grana, 30(2), 398–403.

    Article  Google Scholar 

  • Nasir, Z. A., Colbeck, I., Sultan, S., & Ahmed, S. (2012). Bioaerosols in residential micro-environments in low income countries: A case study from Pakistan. Environmental Pollution, 168, 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Nayak, B. K., Nanda, A., & Behera, N. (1998). Airborne fungal spores in an industrial area: Seasonal and diurnal periodicity. Aerobiologia, 14(1), 59–67.

    Article  Google Scholar 

  • Nayar, T. S., Mohan, T. K., & Jothish, P. S. (2007). Status of airborne spores and pollen in a coir factory in Kerala, India. Aerobiologia, 23(2), 131–143.

    Article  Google Scholar 

  • Ogórek, R., Lejman, A., Pusz, W., Miluch, A., & Miodyńska, P. (2012). Characteristics and taxonomy of Cladosporium fungi. Mikologia Lekarska, 19(2), 80–85.

    Google Scholar 

  • Pandey, A., Brauer, M., Cropper, M. L., Balakrishnan, K., Mathur, P., Dey, S., et al. (2021). Health and economic impact of air pollution in the states of India: The Global Burden of Disease Study 2019. The Lancet Planetary Health, 5(1), e25–e38.

    Article  Google Scholar 

  • Patil, N. S., & Kakde, U. B. (2017). Assessment of fungal bioaerosol emission in the vicinity of a landfill site in Mumbai, India. International Journal of Environment and Waste Management, 20(1), 75–91.

    Article  Google Scholar 

  • Poddar, P. K., & Sahu, O. (2017). Quality and management of wastewater in sugar industry. Applied Water Science, 7, 461–468.

    Article  ADS  CAS  Google Scholar 

  • Schuster, A., & Schmoll, M. (2010). Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 87(3), 787–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soleimani, Z., Goudarzi, G., Sorooshian, A., Marzouni, M. B., & Maleki, H. (2016). Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol. Atmospheric Environment, 138, 135–143.

    Article  ADS  Google Scholar 

  • Solomon, S. (2011). The Indian sugar industry: An overview. Sugar Tech, 13(4), 255–265.

    Article  CAS  Google Scholar 

  • Solomon, S. (2014). Sugarcane agriculture and sugar industry in India: At a glance. Sugar Tech, 16(2), 113–124.

    Article  Google Scholar 

  • Srivastava, A., Verma, R., & Mehta, D. (2021). Characterization of bioaerosols in and around a landfill site in Delhi. Aerobiologia, 37(3), 585–596.

    Article  Google Scholar 

  • Thomma, B. P. (2003). Alternaria spp.: from general saprophyte to specific parasite. Molecular Plant Pathology, 4(4), 225–236.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Umar, R., Khan, M. M. A., & Absar, A. (2006). Groundwater hydrochemistry of a sugarcane cultivation belt in parts of Muzaffarnagar district, Uttar Pradesh, India. Environmental Geology, 49, 999–1008.

    Article  ADS  CAS  Google Scholar 

  • US EPA (United States Environmental Protection Agency). (2011b). Exposure Factors Handbook: 2011 Edition. Office of Research and Development, United States Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F. National Center for Environmental Assessment, Office of Research and Development U.S. Environmental Protection Agency, Washington, D.C. 20460. Retrieved 03 May 2024 from https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252.

  • US EPA (United States Environmental Protection Agency). (2011a). Exposure factors handbook: 2011 Edition. Office of Research and Development, United States Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F. Retrieved 03 Amy 2024 from http://www.epa.gov/ncea/efh/report.html.

  • Verma, A. K., Garg, P. K., Hari Prasad, K. S., Dadhwal, V. K., Dubey, S. K., & Kumar, A. (2021). Sugarcane yield forecasting model based on weather parameters. Sugar Tech, 23(1), 158–166.

    Article  Google Scholar 

  • Wang, Y., Fu, Y., Wang, C., & Wen, N. (2018). Dissimilar emission characteristics between bioaerosol and suspended particles from gaseous biofilters and bioaerosol health risk evaluation. Aerosol and Air Quality Research, 18(7), 1874–1885.

    Article  ADS  CAS  Google Scholar 

  • WHO, World Health Organization. (2005). Indoor air pollution and health Scope of the problem. WHO Fact Sheet No, 292.

  • Wu, P. C., Su, H. J., & Lin, C. Y. (2000). Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons. Science of the Total Environment, 253(1–3), 111–118.

    Google Scholar 

  • Yassin, M. F., & Almouqatea, S. (2010). Assessment of airborne bacteria and fungi in an indoor and outdoor environment. International Journal of Environmental Science and Technology, 7, 535–544.

    Article  Google Scholar 

Download references

Acknowledgements

Author are thankful to IARI- IIFSR and to Mr. Sarad Raz Khan, Quality control (Head of the Department) of the sugar mill, who helped unconditionally throughout the whole field study.

Funding

No funding was received to support the present work.

Author information

Authors and Affiliations

Authors

Contributions

ST collected the data and wrote major portions of the manuscript. AS helped in data collection and writing the manuscript.

Corresponding author

Correspondence to Arun Srivastava.

Ethics declarations

Conflict of interest

Authors declared that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1962 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, S., Srivastava, A. Characterization and health risk assessment of size-segregated fungal bioaerosols in and around a sugar mill in India. Aerobiologia (2024). https://doi.org/10.1007/s10453-024-09812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10453-024-09812-2

Keywords

Navigation