Skip to main content
Log in

Comparison of dichloran rose bengal chloramphenicol and Sabouraud dextrose agar with cycloheximide and chloramphenicol for airborne mold sampling

  • Case Report
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The more the mold species isolated on a culture medium, the more the sampling environment is represented accurately. According to the sampling purpose, it is crucial to use the best culture medium for mold. However, no study is available regarding the comparison of dichloran rose bengal chloramphenicol (DRBC) and Sabouraud dextrose agar with cycloheximide and chloramphenicol (SDA-CHX-CHL) culture media in terms of their application for airborne sampling, isolation, and identification of fungi. Airborne mold samples were impacted onto both DRBC and SDA-CHX-CHL, simultaneously using single-stage Andersen sampler. The limit of detection (LOD) value for airborne mold count was 7 CFU m−3 (1 colony growth on the Petri dish). The total mold counts (TMC) ranged between <7 and 504 CFU m−3 (med 56 CFU m−3) and <7 and 1218 CFU m−3 (med 259 CFU m−3), collected on SDA-CHX-CHL and DRBC, respectively. Significantly higher TMC were observed on DRBC than on SDA regardless of the sampling environment (i.e, indoor or outdoor) (p < 0.05). Among the most predominant mold genera, observation frequencies of Penicillium spp. and Aspergillus spp. on both culture media were found to be more than 70%. Observation frequencies of Cladosporium spp., Alternaria spp., and yeast were found to be higher in samples collected on DRBC than those on SDA-CHX-CHL. Finally, DRBC was found to be superior to SDA in terms of both number of colonies and number of genera isolated from the air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Ajello, L. (1957). Cultural methods for human pathogenic fungi. Journal of Chronic Diseases, 5(5), 545–551.

    Article  CAS  Google Scholar 

  • American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). (2013). ASHRAE Standard 62.1-2013.

  • Barnett, H. L., & Hunter, B. B. (Eds.). (2003). Illustrated genera of imperfect fungi (4th ed.). St. Paul, MN: The American Phytopathological Society (APS) Press.

    Google Scholar 

  • Bascom, R., Kesavanathan, J., & Swift, D. L. (1994). Human susceptibility to indoor contaminants. Occupational Medicine (Philadelphia, Pa.), 10(1), 119–132.

    Google Scholar 

  • Burge, H. P., Solomon, W. R., & Boise, J. R. (1977). Comparative merits of eight popular media in aerometric studies of fungi. Journal of Allergy and Clinical Immunology, 60(3), 199–203.

    Article  CAS  Google Scholar 

  • Chadeganipour, M., Shadzi, S., Nilipour, S., et al. (2010). Airborne fungi in Isfahan and evaluation of allergenic responses of their extracts in animal model. Jundishapur Journal of Microbiology, 3(4), 155–160.

    Google Scholar 

  • Dilon, K., Heinsohn, P., & Miler, D. (Eds.). (1996). Field guide for the determination of biological contaminants in environmental samples (pp. 37–40). Fairfax, VA: AIHA Publications, American Industrial Hygiene Association.

    Google Scholar 

  • Duchaine, C., Mériaux, A., & Comtois, P. (2002). Usefulness of using three different culture media for mold recovery in exposure assessment studies. Aerobiologia, 18(3–4), 245–251.

    Article  Google Scholar 

  • El-Gali, Z. I., & Abdullrahman, E. M. (2014). Seasonal distribution of indoor and outdoor fungi in the air of El-Beida City, Libya. New York Science Journal, 7(6), 94–100.

    Google Scholar 

  • Gent, J. F., Kezik, J. M., Hill, M. E., et al. (2012). Household mold and dust allergens: Exposure, sensitization and childhood asthma morbidity. Environmental Research, 118, 86–93.

    Article  CAS  Google Scholar 

  • Godish, D., & Godish, T. (2007). Relationship between sampling duration and concentration of culturable airborne mould and bacteria on selected culture media. Journal of Applied Microbiology, 102(6), 1479–1484.

    Article  CAS  Google Scholar 

  • Haas, D., Habib, J., Luxner, J., et al. (2014). Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria. Atmospheric Environment, 98, 640–647.

    Article  CAS  Google Scholar 

  • Holme, J., Hägerhed-Engman, L., Mattsson, J., et al. (2010). Culturable mold in indoor air and its association with moisture-related problems and asthma and allergy among Swedish children. Indoor Air, 20(4), 329–340.

    Article  CAS  Google Scholar 

  • Hoppe, K. A., Metwali, N., Perry, S. S., et al. (2012). Assessment of airborne exposures and health in flooded homes undergoing renovation. Indoor Air, 22(6), 446–456.

    Article  CAS  Google Scholar 

  • Hoseinzadeh, E., Samarghandie, M. R., Ghiasian, S. A., et al. (2013). Evaluation of bioaerosols in five educational hospitals wards air in Hamedan, during 2011–2012. Jundishapur Journal of Microbiology, 6(6), e10704.

    Article  Google Scholar 

  • Kalyoncu, F. (2010). Relationship between airborne fungal allergens and meteorological factors in Manisa City, Turkey. Environmental Monitoring and Assessment, 165, 553–558.

    Article  Google Scholar 

  • Kawasaki, T., Kyotani, T., Ushiogi, T., et al. (2010). Distribution and identification of airborne fungi in railway stations in Tokyo, Japan. Journal of Occupational Health, 52(3), 186–193.

    Article  Google Scholar 

  • Kim, K. Y., Kim, Y. S., Kim, D., et al. (2011). Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations. Industrial Health, 49(2), 242–248.

    Article  Google Scholar 

  • King, A. D., Hocking, A. D., & Pitt, J. I. (1979). Dichloran rose bengal medium for enumeration and isolation of moulds from foods. Applied and Environmental Microbiology, 37, 959–964.

    Google Scholar 

  • Larone, D. H. (2011). Medically important fungi, a guide to identification (5th ed.). Washington: ASM Press.

    Book  Google Scholar 

  • Li, L., Lei, C., & Liu, Z. G. (2010). Investigation of airborne fungi at different altitudes in Shenzhen University. Natural Science, 2(5), 506–514.

    Article  Google Scholar 

  • MacFaddin, J. F. (1985). Media for isolation-cultivation identification—Maintenance of medical bacteria (Vol. 1). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Madureira, J., Pereira, C., Paciência, I., et al. (2014). Identification and levels of airborne fungi in Portuguese primary schools. Journal of Toxicology & Environmental Health Part A: Current Issues, 77(14–16), 816–826.

    Article  CAS  Google Scholar 

  • Mentese, S., Arisoy, M., Rad, A., et al. (2009). Bacteria and fungi levels in various indoor and outdoor environments in Ankara, Turkey. Clean—Soil, Air, Water, 37(6), 487–493.

    Article  CAS  Google Scholar 

  • Mentese, S., Mirici, N. A., Otkun, M. T., et al. (2015). Association between respiratory health and indoor air pollution exposure in Canakkale, Turkey. Building and Environment, 93(1), 72–83.

    Article  Google Scholar 

  • Mentese, S., Rad, A. Y., Arısoy, M., et al. (2012a). Multiple comparisons of organic, microbial, and fine particulate pollutants in typical indoor environments: Diurnal and seasonal variations. Journal of the Air & Waste Management Association, 62(12), 1380–1393.

    Article  CAS  Google Scholar 

  • Mentese, S., Rad, A. Y., Arısoy, M., et al. (2012b). Seasonal and spatial variations of bioaerosols in indoor urban environments, Ankara, Turkey. Indoor and Built Environment, 21(6), 797–810.

    Article  CAS  Google Scholar 

  • Morring, K. L., Sorenson, W., & Attfield, M. D. (1983). Sampling for airborne fungi: A statistical comparison of media. The American Industrial Hygiene Association Journal, 44(9), 662–664.

    Article  CAS  Google Scholar 

  • Nieguitsila, A., Arne, P., Durand, B., et al. (2011). Relative efficiencies of two air sampling methods and three culture conditions for the assessment of airborne culturable fungi in a poultry farmhouse in France. Environmental Research, 111, 248–253.

    Article  CAS  Google Scholar 

  • NIOSH. (1998). Method 0800—Bioaerosol sampling (indoor air), culturable organisms: Bacteria, fungi, thermophilic actinomycetes. Washington: NIOSH.

    Google Scholar 

  • Pitt, J. I., & Hocking, A. D. (1997). Fungi and food spoilage (2nd ed.). London: Blackie Academic and Professional.

    Book  Google Scholar 

  • Pitt, J. I., Hocking, A. D., & Diane, A. (2009). Fungi and food spoilage (3rd ed.). Heidelberg: Springer.

    Book  Google Scholar 

  • Ponce-Caballero, C., Gamboa-Marrufo, M., López-Pacheco, M., et al. (2013). Seasonal variation of airborne fungal propagules indoor and outdoor of domestic environments in Mérida, Mexico. Atmósfera, 26(3), 369–377.

    Article  CAS  Google Scholar 

  • Rao, C. Y., Burge, H. A., & Chang, J. C. (1996). Review of quantitative standards and guidelines for fungi in indoor air. Journal of the Air & Waste Management Association, 46(9), 899–908.

    Article  CAS  Google Scholar 

  • Ren, P., Jankun, T., Belanger, K., et al. (2001). The relation between fungal propagules in indoor air and home characteristics. Allergy, 56(5), 419–424.

    Article  CAS  Google Scholar 

  • Rosenbaum, P. F., Crawford, J. A., Anagnost, S. E., et al. (2010). Indoor airborne fungi and wheeze in the first year of life among a cohort of infants at risk for asthma. Journal of Exposure Science & Environmental Epidemiology, 20(6), 503–515.

    Article  Google Scholar 

  • Rosenthal, S. A., & Furnari, D. (1957). The use of a cycloheximide–chloramphenicol medium in routine culture for fungi. Journal of Investigative Dermatology, 28(5), 367–371.

    Article  CAS  Google Scholar 

  • Sabouraud, R. (1896). La question des teignes. In Annales de dermatologie 3rd series, Vol. VII, pp. 87–135.

  • Samson, R. A., Houbraken, J., Thrane, U., et al. (2010). Food and indoor fungi. Utrecht, The Nederlands: CBS-KNAW Fungal Biodiversity Centre.

    Google Scholar 

  • Sunesson, A., Vaes, W., Nilsson, C., et al. (1995). Identification of volatile metabolites from five fungal species cultivated on two media. Applied and Evironmental Microbiology, 61(8), 2911–2918.

    CAS  Google Scholar 

  • Sutton, D. A., Fothergill, W. A., & Rinaldi, M. G. (1998). Guide to clinically significant fungi. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Turska, E., Konopka, K., & Turski, W. (1976). The effect of chloramphenicol and cycloheximide on the activity of enzyme “markers” of mitochondrial substructures of the rat liver. Acta Biologica et Medica Germanica, 36(9), 1231–1236.

    Google Scholar 

  • Wu, P. C., Su, H. J. J., & Ho, H. M. (2000). A comparison of sampling media for environmental viable fungi collected in a hospital environment. Environmental Research, 82(3), 253–257.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported financially by The Scientific and Technological Council of Turkey (TUBITAK). Project No: 112Y059. Authors also thank to Osman Cotuker and Deniz Tasdibi for field studies and to Catherine Yigit for English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Mentese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mentese, S., Otkun, M.T. & Palaz, E. Comparison of dichloran rose bengal chloramphenicol and Sabouraud dextrose agar with cycloheximide and chloramphenicol for airborne mold sampling. Aerobiologia 33, 211–219 (2017). https://doi.org/10.1007/s10453-016-9462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-016-9462-2

Keywords

Navigation