Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Advances in Computational Mathematics
  3. Article

Adaptive machine learning-based surrogate modeling to accelerate PDE-constrained optimization in enhanced oil recovery

  • Open Access
  • Published: 09 November 2022
  • volume 48, Article number: 73 (2022)
Download PDF

You have full access to this open access article

Advances in Computational Mathematics Aims and scope Submit manuscript
Adaptive machine learning-based surrogate modeling to accelerate PDE-constrained optimization in enhanced oil recovery
Download PDF
  • Tim Keil1,
  • Hendrik Kleikamp1,
  • Rolf J. Lorentzen2,
  • Micheal B. Oguntola  ORCID: orcid.org/0000-0001-6692-639X2,3 &
  • …
  • Mario Ohlberger1 
  • 328 Accesses

  • 1 Citation

  • Explore all metrics

  • Cite this article

Abstract

In this contribution, we develop an efficient surrogate modeling framework for simulation-based optimization of enhanced oil recovery, where we particularly focus on polymer flooding. The computational approach is based on an adaptive training procedure of a neural network that directly approximates an input-output map of the underlying PDE-constrained optimization problem. The training process thereby focuses on the construction of an accurate surrogate model solely related to the optimization path of an outer iterative optimization loop. True evaluations of the objective function are used to finally obtain certified results. Numerical experiments are given to evaluate the accuracy and efficiency of the approach for a heterogeneous five-spot benchmark problem.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Pancholi, S., Negi, G.S., Agarwal, J.R., Bera, A., Shah, M.: Experimental and simulation studies for optimization of water–alternating-gas (CO2) flooding for enhanced oil recovery. Petroleum Res. 5(3), 227–234 (2020). https://doi.org/10.1016/j.ptlrs.2020.04.004

    Article  Google Scholar 

  2. Van, S.L., Chon, B.H.: Well-pattern investigation and selection by surfactant-polymer flooding performance in heterogeneous reservoir consisting of interbedded low-permeability layer. Kor. J. Chem. Eng. 33 (12), 3456–3464 (2016). https://doi.org/10.1007/s11814-016-0190-7

    Article  Google Scholar 

  3. Zhang, Y., Lu, R., Forouzanfar, F., Reynolds, A.C.: Well placement and control optimization for WAG/SAG processes using ensemble-based method. Comput. Chem. Eng. 101, 193–209 (2017). https://doi.org/10.1016/j.compchemeng.2017.02.020

    Article  Google Scholar 

  4. Gudiña, E.J., Fernandes, E.C., Rodrigues, A.I., Teixeira, J.A., Rodrigues, L.R.: Biosurfactant production by bacillus subtilis using corn steep liquor as culture medium. Front. Microbiol. 6, 59 (2015). https://doi.org/10.3389/fmicb.2015.00059

    Google Scholar 

  5. Abidin, A., Puspasari, T., Nugroho, W.: Polymers for enhanced oil recovery technology. Procedia Chemistry 4, 11–16 (2012). https://doi.org/10.1016/j.proche.2012.06.002

    Article  Google Scholar 

  6. Wang, D., Seright, R.S., Shao, Z., Wang, J., et al.: Key aspects of project design for polymer flooding at the daqing oilfield. SPE Reserv Eval Eng 11(06), 1–117 (2008). https://doi.org/10.2118/109682-PA

    Article  Google Scholar 

  7. Oguntola, M.B., Lorentzen, R.J.: On the robust value quantification of polymer eor injection strategies for better decision making. In: ECMOR XVII. https://doi.org/10.3997/2214-4609.202035057. European Association of Geoscientists & Engineers, vol. 2020, pp 1–25 (2020)

  8. Xu, L., Zhao, H., Li, Y., Cao, L., Xie, X., Zhang, X., Li, Y.: Production optimization of polymer flooding using improved monte carlo gradient approximation algorithm with constraints. J. Circ. Syst. Comput. 27 (11), 1850167 (2018). https://doi.org/10.1142/S0218126618501670

    Article  Google Scholar 

  9. Zhou, K., Hou, J., Zhang, X., Du, Q., Kang, X., Jiang, S.: Optimal control of polymer flooding based on simultaneous perturbation stochastic approximation method guided by finite difference gradient. Comput. Chem. Eng. 55, 40–49 (2013). https://doi.org/10.1016/j.compchemeng.2013.04.009

    Article  Google Scholar 

  10. Dedè, L.: Reduced basis method and error estimation for parametrized optimal control problems with control constraints. J. Sci. Comput. 50(2), 287–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grepl, M.A., Kärcher, M.: Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C.R. Math. 349(15-16), 873–877 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kammann, E., Tröltzsch, F., Volkwein, S.: A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD. ESAIM: M2AN 47(2), 555–581 (2013). https://doi.org/10.1051/m2an/2012037

    Article  MathSciNet  MATH  Google Scholar 

  13. Kärcher, M., Tokoutsi, Z., Grepl, M.A., Veroy, K.: Certified reduced basis methods for parametrized elliptic optimal control problems with distributed controls. J. Sci. Comput. 75(1), 276–307 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Negri, F., Rozza, G., Manzoni, A., Quateroni, A.: Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35(5), 2316–2340 (2013). https://doi.org/10.1137/120894737

    Article  MathSciNet  Google Scholar 

  15. Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.): Model reduction of parametrized systems. MS&A. modeling, simulation and applications, vol. 17. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-58786-8. Selected papers from the 3rd MoRePaS Conference held at the International School for Advanced Studies (SISSA), Trieste, October 13–16, 2015

  16. Garmatter, D., Haasdonk, B., Harrach, B.: A reduced basis Landweber method for nonlinear inverse problems. Inverse Prob. 32(3), 035001–21 (2016). https://doi.org/10.1088/0266-5611/32/3/035001

    Article  MathSciNet  MATH  Google Scholar 

  17. Zahr, M.J., Farhat, C.: Progressive construction of a parametric reduced-order model for PDE-constrained optimization. Int. J. Numer. Meth. Engng 102, 1111–1135 (2015). https://doi.org/10.1002/nme.4770

    Article  MathSciNet  MATH  Google Scholar 

  18. Keil, T., Mechelli, L., Ohlberger, M., Schindler, F., Volkwein, S.: A non-conforming dual approach for adaptive trust-region reduced basis approximation of PDE-constrained parameter optimization. ESAIM Math. Model. Numer. Anal. 55(3), 1239–1269 (2021). https://doi.org/10.1051/m2an/2021019

    Article  MathSciNet  MATH  Google Scholar 

  19. Qian, E., Grepl, M., Veroy, K., Willcox, K.: A certified trust region reduced basis approach to PDE-constrained optimization. SIAM J. Sci. Comput. 39(5), 434–460 (2017). https://doi.org/10.1137/16M1081981

    Article  MathSciNet  MATH  Google Scholar 

  20. Yue, Y., Meerbergen, K.: Accelerating optimization of parametric linear systems by model order reduction. SIAM J. Optim. 23(2), 1344–1370 (2013). https://doi.org/10.1137/120869171

    Article  MathSciNet  MATH  Google Scholar 

  21. Gavrilenko, P., Haasdonk, B., Iliev, O., Ohlberger, M., Schindler, F., Toktaliev, P., Wenzel, T., Youssef, M.: A full order, reduced order and machine learning model pipeline for efficient prediction of reactive flows. arXiv:2104.02800v2 (2021)

  22. Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler, F., Wenzel, T.: A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs. arXiv:2204.13454 (2022)

  23. Haasdonk, B., Ohlberger, M., Schindler, F.: An adaptive model hierarchy for data-augmented training of kernel models for reactive flow. arXiv:2110.12388v1 (2021)

  24. Hesthaven, J.S., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys. 363, 55–78 (2018). https://doi.org/10.1016/j.jcp.2018.02.037

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Q., Hesthaven, J.S., Ray, D.: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem. J. Comput. Phys. 384, 289–307 (2019). https://doi.org/10.1016/j.jcp.2019.01.031

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee, K., Carlberg, K.T.: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. 404, 108973–32 (2020). https://doi.org/10.1016/j.jcp.2019.108973

    Article  MathSciNet  MATH  Google Scholar 

  27. Ahmadi, M.A.: Developing a robust surrogate model of chemical flooding based on the artificial neural network for enhanced oil recovery implications. Math. Probl. Eng. 2015, 9 (2015). https://doi.org/10.1155/2015/706897

    Article  Google Scholar 

  28. Saberi, H., Esmaeilnezhad, E., Choi, H.J.: Artificial neural network to forecast enhanced oil recovery using hydrolyzed polyacrylamide in sandstone and carbonate reservoirs. Polymers 13(16). https://doi.org/10.3390/polym13162606 (2021)

  29. Cheraghi, Y., Kord, S., Mashayekhizadeh, V.: Application of machine learning techniques for selecting the most suitable enhanced oil recovery method; challenges and opportunities. J. Pet. Sci. Eng. 205, 108761 (2021). https://doi.org/10.1016/j.petrol.2021.108761

    Article  Google Scholar 

  30. Golzari, A., Haghighat Sefat, M., Jamshidi, S.: Development of an adaptive surrogate model for production optimization. J. Pet. Sci. Eng. 133, 677–688 (2015). https://doi.org/10.1016/j.petrol.2015.07.012

    Article  Google Scholar 

  31. Lee, J.-Y., Shin, H.-J., Lim, J.-S.: Selection and evaluation of enhanced oil recovery method using artificial neural network. Geosystem Engineering 14, 157–164 (2011). https://doi.org/10.1080/12269328.2011.10541345

    Article  Google Scholar 

  32. Lye, K.O., Mishra, S., Ray, D., Chandrashekar, P.: Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks. Comput. Methods Appl. Mech. Eng. 374, 113575 (2021). https://doi.org/10.1016/j.cma.2020.113575

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, S., Bhouri, M.A., Perdikaris, P.: Fast PDE-constrained optimization via self-supervised operator learning. arXiv:2110.13297 (2021)

  34. Sarma, P., Durlofsky, L.J., Aziz, K., Chen, W.H.: Efficient real-time reservoir management using adjoint-based optimal control and model updating. Comput. Geosci. 10 (1), 3–36 (2006). https://doi.org/10.1007/s10596-005-9009-z

    Article  MathSciNet  MATH  Google Scholar 

  35. Rasmussen, A.F., Sandve, T.H., Bao, K., Lauser, A., Hove, J., Skaflestad, B., Klöfkorn, R., Blatt, M., Rustad, A.B., Sævareid, O., et al: The open porous media flow reservoir simulator. Computers & Mathematics with Applications 81, 159–185 (2021). https://doi.org/10.1016/j.camwa.2020.05.014

    Article  MathSciNet  MATH  Google Scholar 

  36. Bao, K., Lie, K. -A., Møyner, O., Liu, M.: Fully implicit simulation of polymer flooding with MRST. Comput. Geosci. 21(5), 1219–1244 (2017). https://doi.org/10.1007/s10596-017-9624-5

    Article  MathSciNet  MATH  Google Scholar 

  37. Holmes, J.: Enhancements to the strongly coupled, fully implicit well model: wellbore crossflow modeling and collective well control. In: SPE Reservoir Simulation Symposium. https://doi.org/10.2118/12259-MS.OnePetro (1983)

  38. Holmes, J., Barkve, T., Lund, O.: Application of a multisegment well model to simulate flow in advanced wells. In: European Petroleum Conference. https://doi.org/10.2118/50646-MS.OnePetro (1998)

  39. Chen, Z.: Reservoir simulation: Mathematical techniques in oil recovery. SIAM (2007)

  40. Lu, R., Reynolds, A.: Joint optimization of well locations, types, drilling order, and controls given a set of potential drilling paths. SPE J. 25 (03), 1285–1306 (2020). https://doi.org/10.2118/193885-MS

    Article  Google Scholar 

  41. Chen, Y., Oliver, D.S., Zhang, D.: Efficient ensemble-based closed-loop production optimization. SPE J. 14(04), 634–645 (2009). https://doi.org/10.2118/112873-PA

    Article  Google Scholar 

  42. Stordal, A.S., Szklarz, S.P., Leeuwenburgh, O.: A theoretical look at ensemble-based optimization in reservoir management. Math. Geosci. 48(4), 399–417 (2016). https://doi.org/10.1007/s11004-015-9598-6

    Article  MathSciNet  MATH  Google Scholar 

  43. Nocedal, J., Wright, S.: Numerical optimization springer. https://doi.org/10.1007/978-0-387-40065-5 (2006)

  44. Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to time series analysis and forecasting. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  45. Fonseca, R.R.-M., Chen, B., Jansen, J.D., Reynolds, A.: A stochastic simplex approximate gradient (stosag) for optimization under uncertainty. Int. J. Numer. Methods Eng. 109(13), 1756–1776 (2017). https://doi.org/10.1002/nme.5342

    Article  MathSciNet  MATH  Google Scholar 

  46. Oguntola, M.B., Lorentzen, R.J.: Ensemble-based constrained optimization using an exterior penalty method. J. Pet. Sci. Eng. 207, 109165 (2021). https://doi.org/10.1016/j.petrol.2021.109165

    Article  Google Scholar 

  47. Petersen, P., Voigtlaender, F.: Optimal approximation of piecewise smooth functions using deep reLU neural networks. Neural Netw. 108, 296–330 (2018). https://doi.org/10.1016/j.neunet.2018.08.019

    Article  MATH  Google Scholar 

  48. Elbrächter, D., Grohs, P., Jentzen, A., Schwab, C.: DNN Expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation. https://doi.org/10.1007/s00365-021-09541-6 (2021)

  49. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018). https://doi.org/10.1137/16M1080173

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989). https://doi.org/10.1007/BF01589116

    Article  MathSciNet  MATH  Google Scholar 

  51. Prechelt, L.: Early stopping - but when?. In: Neural Networks: Tricks of the Trade, Volume 1524 of LNCS, Chapter 2. https://doi.org/10.1007/978-3-642-35289-8∖_5, pp 55–69. Springer (1997)

  52. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034. https://doi.org/10.1109/ICCV.2015.123 (2015)

  53. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–44 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  54. Fonseca, R., Kahrobaei, S., Van Gastel, L., Leeuwenburgh, O., Jansen, J.: Quantification of the impact of ensemble size on the quality of an ensemble gradient using principles of hypothesis testing. In: SPE Reservoir Simulation Symposium. https://doi.org/SPE-173236-MS. OnePetro (2015)

  55. Baxendale, D., Rasmussen, A.F., Rustad, A.B., Skille, T., Sandve, T.H.: OPM Flow documentation manual. Open Porous Media Initiative (2021)

  56. Milk, R., Rave, S., Schindler, F.: PyMOR – generic algorithms and interfaces for model order reduction. SIAM J. Sci. Comput. 38(5), 194–216 (2016). https://doi.org/10.1137/15m1026614

    Article  MathSciNet  MATH  Google Scholar 

  57. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R (eds.) Advances in Neural Information Processing Systems, vol. 32, pp 8024–8035. Curran Associates Inc (2019)

  58. Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 13(2), 185–188 (1971). https://doi.org/10.1137/1013035

    Article  MathSciNet  MATH  Google Scholar 

  59. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008). https://doi.org/10.1214/009053607000000677

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Open access funding provided by University Of Stavanger • Tim Keil, Hendrik Kleikamp, Micheal Oguntola and Mario Ohlberger received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 –390685587, Mathematics Münster: Dynamics–Geometry–Structure.

• Tim Keil and Mario Ohlberger received funding from the Deutsche Forschungsgemeinschaft under contract OH 98/11-1.

• Micheal Oguntola and Rolf Lorentzen received funding from the Research Council of Norway and the industry partners, ConocoPhillips Skandinavia AS, Aker BP ASA, Vår Energi AS, Equinor Energy AS, Neptune Energy Norge AS, Lundin Energy Norway AS, Halliburton AS, Schlumberger Norge AS, and Wintershall Dea Norge AS, of The National IOR Centre of Norway.

Author information

Authors and Affiliations

  1. Institute for Analysis and Numerics and Mathematics Münster, University of Münster, Einsteinstrasse 62, D-48149, Münster, Germany

    Tim Keil, Hendrik Kleikamp & Mario Ohlberger

  2. NORCE-Norwegian Research Center AS, 5838, Bergen, Norway

    Rolf J. Lorentzen & Micheal B. Oguntola

  3. University of Stavanger, 4036, Stavanger, Norway

    Micheal B. Oguntola

Authors
  1. Tim Keil
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Hendrik Kleikamp
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Rolf J. Lorentzen
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Micheal B. Oguntola
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Mario Ohlberger
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Micheal B. Oguntola.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Gianluigi Rozza

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keil, T., Kleikamp, H., Lorentzen, R.J. et al. Adaptive machine learning-based surrogate modeling to accelerate PDE-constrained optimization in enhanced oil recovery. Adv Comput Math 48, 73 (2022). https://doi.org/10.1007/s10444-022-09981-z

Download citation

  • Received: 04 March 2022

  • Accepted: 15 September 2022

  • Published: 09 November 2022

  • DOI: https://doi.org/10.1007/s10444-022-09981-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • PDE-constrained optimization
  • Enhanced oil recovery
  • Machine learning
  • Neural networks
  • Surrogate modeling
  • Ensemble-based optimization

Mathematics Subject Classification (2010)

  • 49M41
  • 68T07
  • 90C90
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature