Skip to main content
Log in

Multi-Scale Progressive Damage Model for Analyzing the Failure Mechanisms of 2D Triaxially Braided Composite under Uniaxial Compression Loads

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Based on continuum damage mechanics (CDM), a multi-scale progressive damage model (PDM) is developed to analyze the uniaxial compression failure mechanisms of 2D triaxially braided composite (2DTBC). The multi-scale PDM starts from the micro-scale analysis which obtains the stiffness and strength properties of fiber tows by a representative unit cell (RUC) model. Meso-scale progressive damage analysis is conducted subsequently to predict the compression failure behaviors of the composite using the results of micro-scale analysis as inputs. To research the free-edge effect on the local failure mechanisms, meso-scale models of different widths are also established. The stress-strain curves obtained by numerical analysis are verified with the experimental data. Results show that fiber and matrix compression failure inside the fiber tows are the major failure modes of the composite under axial compression. For transverse compression, the dominated failure modes are recorded for matrix compression failure inside the fiber tows. It is also presented that the free-edge effect plays an important role in the transverse mechanical response of the composite, and the failure behaviors of the internal fiber tows are strongly influenced as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ren, Y., Zhang, S., Jiang, H., Xiang, J.: Meso-scale progressive damage behavior characterization of triaxial braided composites under quasi-static tensile load. Appl. Compos. Mater. 25(2), 335–352 (2018)

    Article  Google Scholar 

  2. Tan, H., Liu, L., Guan, Y., Chen, W., Zhao, Z.: A simplified delamination modelling methodology for triaxial braided composites with macro-scale solid finite-element models. Int. J. Crashworthiness. 1–17 (2018). https://doi.org/10.1080/13588265.2017.1400634

  3. Zhang, M., Guan, Z., Wang, X., Du, S.: Micro-mechanical analysis about kink band in carbon fiber/epoxy composites under longitudinal compression. Appl. Compos. Mater. 24(5), 1011–1028 (2017)

    Article  Google Scholar 

  4. Yang, L., Yan, Y., Liu, Y., Ran, Z.: Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression. Compos. Sci. Technol. 72(15), 1818–1825 (2012)

    Article  CAS  Google Scholar 

  5. Ren, Y., Jiang, H., Gao, B., Xiang, J.: A progressive intraply material deterioration and delamination based failure model for the crashworthiness of fabric composite corrugated beam: parameter sensitivity analysis. Compos. Part B. 135, 49–71 (2018)

    Article  CAS  Google Scholar 

  6. Ren, Y., Jiang, H., Ji, W., Zhang, H., Xiang, J., Yuan, F.G.: Improvement of progressive damage model to predicting crashworthy composite corrugated plate. Appl. Compos. Mater. 25(1), 45–66 (2018)

    Article  CAS  Google Scholar 

  7. Kohlman, L.W., Bail, J.L., Roberts, G.D., Salem, J.A., Martin, R.E., Binienda, W.K.: A notched coupon approach for tensile testing of braided composites. Compos. Part A. 43(10), 1680–1688 (2012)

    Article  CAS  Google Scholar 

  8. Littell, J.D., Binienda, W.K., Roberts, G.D., Goldberg, R.K.: Characterization of damage in triaxial braided composites under tensile loading. J. Aerosp. Eng. 22(3), 270–279 (2009)

    Article  Google Scholar 

  9. Quek, S.C., Waas, A.M., Shahwan, K.W., Agaram, V.: Compressive response and failure of braided textile composites: Part1—experiments. Int. J. Nonlin. Mech. 39(4), 635–648 (2003)

    Article  Google Scholar 

  10. Roberts, G.D., Goldberg, R.K., Binienda, W.K., Arnold, W.A., Littell, J.D., Kohlman L.W.: Characterization of triaxial braided composite material properties for impact simulation. NASA TM 215660 (2009)

  11. Wehrkamp-Richter, T., Hinterhölzl, R., Pinho, S.T.: Damage and failure of triaxial braided composites under multi-axial stress states. Compos. Sci. Technol. 150, 32–44 (2017)

    Article  CAS  Google Scholar 

  12. Mourid, A.E., Ganesan, R., Brochu, M., Lévesque, M.: Effect of temperature on the failure modes of a triaxially braided polymer matrix composite. Int. J. Solids Struct. 97–98, 1–15 (2016)

    Article  Google Scholar 

  13. Zhang, C., Binienda, W.K., Morscher, G.N., Martin, R.E., Kohlman, L.W.: Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites. Compos. Part A. 46(46), 34–44 (2013)

    Article  CAS  Google Scholar 

  14. Ivanov, D.S., Baudry, F., Broucke, B.V.D., Lomov, S.V., Xie, H., Verpoest, I.: Failure analysis of triaxial braided composite. Compos. Sci. Technol. 69(9), 1372–1380 (2009)

    Article  CAS  Google Scholar 

  15. Binienda, W.K., Li, X.: A mesomechanical model for numerical study of two dimensional triaxially braided composite. J. Eng. Mech. 136(11), 1366–1379 (2010)

    Article  Google Scholar 

  16. Li, X., Binienda, W.K., Goldberg, R.K.: Finite element model for failure study of two dimensional triaxially braided composite. J. Aerosp. Eng. 24(2), 170–180 (2010)

    Article  Google Scholar 

  17. García-Carpintero, A., Herráez, M., Xu, J., Lopes, C.S., González, C.: A multi material shell model for the mechanical analysis of triaxial braided composites. Appl. Compos. Mater. 24(1), 1–21 (2017)

    Article  Google Scholar 

  18. Littell, J.D., Binienda, W.K., Arnold, W.A., Roberts, G.D., Goldberg, R.K.: Effect of microscopic damage events on static and ballistic impact strength of triaxial braid composites. Compos. Part A. 40(12), 1846–1862 (2009)

    Article  Google Scholar 

  19. Song, S., Waas, A.M., Shahwan, K.W., Faruque, O., Xiao, X.: Compression response, strength and post-peak response of an axial fiber reinforced tow. Int. J. Mech. Sci. 51(7), 491–499 (2009)

    Article  Google Scholar 

  20. Song, S., Waas, A.M., Shahwan, K.W., Faruque, O., Xiao, X.: Compression response of 2D braided textile composites: single cell and multiple cell micromechanics based strength predictions. J. Compos. Mater. 42(23), 2461–2482 (2015)

    Article  Google Scholar 

  21. Song, S., Waas, A.M., Shahwan, K.W., Faruque, O., Xiao, X.: Effects of matrix microcracking on the response of 2D braided textile composites subjected to compression loads. J. Compos. Mater. 44(2), 221–240 (2015)

    Article  Google Scholar 

  22. Wang, C., Zhong, Y., Adaikalaraj, P.F.B., Ji, X., Roy, A., Silberschmidt, V.V., Chen, Z.: Strength prediction for bi-axial braided composites by a multi-scale modelling approach. J. Mater. Sci. 51(12), 6002–6018 (2016)

    Article  CAS  Google Scholar 

  23. Lu, Z., Zhou, Y., Yang, Z., Liu, Q.: Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension. Comput. Mater. Sci. 79, 485–494 (2013)

    Article  Google Scholar 

  24. Xu, Q., Qu, S.: Multiscale simulation of damage progression in 5-harness satin weave composites. JOM. 67(7), 1491–1498 (2015)

    Article  Google Scholar 

  25. Jiang, H., Ren, Y., Zhang, S., Liu, Z., Nie, L.: Multi-scale finite element analysis for tension and ballistic penetration damage characterizations of 2D triaxially braided composite. J. Mater. Sci. 53(14), 10071–10094 (2018)

    Article  CAS  Google Scholar 

  26. Mao, J.Z., Sun, X.S., Ridha, M., Tan, V.B.C., Tay, T.E.: A modeling approach across length scales for progressive failure analysis of woven composites. Appl. Compos. Mater. 20(3), 213–231 (2013)

    Article  Google Scholar 

  27. Zhao, Z., Dang, H., Zhang, C., Yun, G.J., Li, Y.: A multi-scale modeling framework for impact damage simulation of triaxially braided composites. Compos. Part A. 110, 113–125 (2018)

    Article  CAS  Google Scholar 

  28. Liu, K.C., Chattopadhyay, A., Bednarcyk, B.A., Arnold, S.M.: Efficient multiscale modeling framework for triaxially braided composites using generalized method of cells. J. Aerosp. Eng. 24(24), 162–169 (2015)

    Google Scholar 

  29. Xu, L., Jin, C.Z., Ha, S.K.: Ultimate strength prediction of braided textile composites using a multi-scale approach. J. Compos. Mater. 49(4), 477–494 (2015)

    Article  CAS  Google Scholar 

  30. Deng, Y., Chen, X., Wang, H.: A multi-scale correlating model for predicting the mechanical properties of tri-axial braided composites. J. Reinf. Plast. Compos. 32(24), 1934–1955 (2013)

    Article  Google Scholar 

  31. Zhang, C., Binienda, W.K., Goldberg, R.K.: Free-edge effect on the effective stiffness of single-layer triaxially braided composite. Compos. Sci. Technol. 107, 145–153 (2015)

    Article  CAS  Google Scholar 

  32. Zhang, C., Binienda, W.K.: Numerical analysis of free-edge effect on size-influenced mechanical properties of single-layer triaxially braided composites. Appl. Compos. Mater. 21(6), 841–859 (2014)

    Article  Google Scholar 

  33. Zhang, C., Li, N., Wang, W., Binienda, W.K., Fang, H.: Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model. Compos. Struct. 125, 104–116 (2015)

    Article  Google Scholar 

  34. Zhang, C., Binienda, W.K., Kohlman, L.W.: Analytical model and numerical analysis on the elastic behavior of triaxial braided composites. J. Aerosp. Eng. 27(3), 473–483 (2014)

    Article  Google Scholar 

  35. Fang, G.D., Liang, J., Wang, B.L.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89(1), 126–133 (2009)

    Article  Google Scholar 

  36. Xia, Z., Zhang, Y., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40(8), 1907–1921 (2003)

    Article  Google Scholar 

  37. Zhang, C., Curiel-Sosa, J.L., Bui, T.Q.: Comparison of periodic mesh and free mesh on the mechanical properties prediction of 3D braided composites. Compos. Struct. 159, 667–676 (2017)

    Article  Google Scholar 

  38. Liu, P.F., Liao, B.B., Jia, L.Y., Peng, X.Q.: Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact. Compos. Struct. 149, 408–422 (2016)

    Article  Google Scholar 

  39. Zhang, D., Chen, L., Sun, Y., Zhang, Y., Qian, K.: Multi-scale modeling of an integrated 3D braided composite with applications to helicopter arm. Appl. Compos. Mater. 24(5), 1–18 (2017)

    Google Scholar 

  40. Littell, J.: The Experimental and Analytical Characterization of the Macromechanical Response for Triaxial Braided Composite Materials. The University of Akron, Akron (2008)

    Google Scholar 

Download references

Acknowledgements

This research is co-supported by the Shenzhen Basic Research Program (JCYJ20170307141601162), the National Natural Science Foundation of China (No.11402011) and the Fundamental Research Funds for the Central Universities (No. 201401390741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiru Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Jiang, H., Ren, Y. et al. Multi-Scale Progressive Damage Model for Analyzing the Failure Mechanisms of 2D Triaxially Braided Composite under Uniaxial Compression Loads. Appl Compos Mater 25, 921–938 (2018). https://doi.org/10.1007/s10443-018-9732-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-018-9732-y

Keywords

Navigation