Skip to main content
Log in

A Modeling Approach Across Length Scales for Progressive Failure Analysis of Woven Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper presents a multiscale modeling approach for the progressive failure analysis of carbon-fiber-reinforced woven composite materials. Hierarchical models of woven composites at three different length scales (micro, meso, and macro) were developed according to their unique geometrical and material characteristics. A novel strategy of two-way information transfer is developed for the multiscale analysis of woven composites. In this strategy, the macroscopic effective material properties are obtained from property homogenizations at micro and meso scales and the stresses at three length scales are computed with stress amplification method from macroscale to microscale. By means of the two-way information transfer, the micro, meso and macro structural characterizations of composites are carried out so that the micromechanisms of damage and their interactions are successfully investigated in a single macro model. In addition, both the nucleation and growth of damages are tracked during the progressive failure analysis. A continuum damage mechanics (CDM) method is used for post-failure modeling. The material stiffness, tensile strength and damage patterns of an open-hole woven composite laminate are predicted with the proposed multiscale method. The predictions are in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lomov, S.V., Ivanov, D.S., Verpoest, I., Zako, M., Kurashiki, T., Nakai, H., Hirosawa, S.: Meso-FE modelling of textile composites: road map, data flow and algorithms. Compos. Sci. Technol. 67, 1870–1891 (2007)

    Article  Google Scholar 

  2. Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media. Kluwer, Boston (1989)

    Book  Google Scholar 

  3. Nemat-Nasser, S., Hori, M.: Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam (1999)

    Google Scholar 

  4. Torquato, S.: Random Heterogeneous Materials. Springer, New York (2001)

    Google Scholar 

  5. Vandeurzen, P., Ivens, J., Verpoest, I.: A three-dimensional micromechanical analysis of woven-fabric composites: I. Geometric analysis. Compos. Sci. Technol. 56, 1303–1315 (1996)

    Article  CAS  Google Scholar 

  6. Vandeurzen, P., Ivens, J., Verpoest, I.: A three-dimensional micromechanical analysis of woven-fabric composites: II. Elastic analysis. Compos. Sci. Technol. 56, 1317–1327 (1996)

    Article  CAS  Google Scholar 

  7. Tang, X.D., Whitcomb, J.D.: Progressive failure behaviors of 2D woven composites. J. Compos. Mater. 37, 1239–1259 (2003)

    Article  CAS  Google Scholar 

  8. Shang, Z.S., Hoa, S.V.: Three dimensional micro-mechanical modeling of woven fabric composites. J. Compos. Mater. 35, 1701–1729 (2001)

    Google Scholar 

  9. Lomov, S.V., Huysmans, G., Luo, Y., Parnas, R.S., Prodromou, A., Verpoest, I., Phelan, F.R.: Textile composites: modeling strategies. Compos. Part A 32, 1379–1394 (2001)

    Article  Google Scholar 

  10. Lomov, S.V., Gusakov, A.V., Huysmans, G., Luo, Y., Parnas, R.S., Prodromou, A., Verpoest, I.: Textile geometry preprocessor for meso-mechanical models of woven composites. Compos. Sci. Technol. 60, 2083–2095 (2000)

    Article  Google Scholar 

  11. Lomov, S.V., Mikolanda, T., Kosek, M., Verpoest, I.: Model of internal geometry of textile fabrics: data structure and virtual reality implementation. J. Text. I. 98, 1–13 (2007)

    Article  Google Scholar 

  12. Lomov, S.V., Perie, G., Ivanov, D.S., Verpoest, I., Marsal, D.: Modeling three-dimensional fabrics and three-dimensional reinforced composites: challenges and solutions. Text. Res. J. 81, 28–41 (2011)

    Article  CAS  Google Scholar 

  13. Blackketter, D.M., Walrath, D.E., Hansen, A.C.: Modeling damage in a plain weave fabric-reinforced composite material. J. Compos. Tech. Res. 15, 136–142 (1993)

    Article  Google Scholar 

  14. Zako, M., Uetsuji, Y., Kurashiki, T.: Finite element analysis of damaged woven fabric composites materials. Compos. Sci. Technol. 63, 507–576 (2003)

    Article  CAS  Google Scholar 

  15. Römelt, P., Cunningham, P.R.: A multi-scale finite element approach for modeling damage progression in woven composite structures. Compos. Struct. 94, 977–986 (2012)

    Article  Google Scholar 

  16. Tserpes, K.I., Labeas, G., Pantelakis, S.: Multi-scale modeling of the mechanical response of plain weave composites and cellular solids. Theor. Appl. Fract. Mec. 54, 172–179 (2010)

    Article  CAS  Google Scholar 

  17. Ridha, M., Tan, V.B.C., Tay, T.E.: Traction-separation laws for progressive failure of bonded scarf repair of composite panel. Compos. Struct. 93, 1239–1245 (2011)

    Article  Google Scholar 

  18. Talreja, R.: Multi-scale modeling in damages mechanics of composite materials. J. Mater. Sci. 41, 6800–6812 (2006)

    Article  CAS  Google Scholar 

  19. Ernst, G., Vogler, M., Huhne, C., Rolfes, R.: Multiscale progressive failure analysis of textile composites. Compos. Sci. Technol. 70, 61–72 (2010)

    Article  CAS  Google Scholar 

  20. Llorca, J., González, C., Molina-Aldareguía, J.M., Segurado, J., Seltzer, R., Sket, F., Rodríguez, M., Sádaba, S., Muñoz, R., Cana, L.P.: Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23, 5130–5147 (2011)

    Article  CAS  Google Scholar 

  21. Molina-Aldareguía, J.M., Rodriguez, M., Gonzalez, C., Llorca, J.: An experimental and numerical study of the influence of local effects on the application of the fibre push-in test. Philos. Mag. 91, 1293–1307 (2011)

    Article  Google Scholar 

  22. Rollin, M., Jouannigot, S., Lamon, J., Pailler, R.: Characterization of fibre/matrix interfaces in carbon/carbon composites. Compos. Sci. Technol. 69, 1442–1446 (2009)

    Article  CAS  Google Scholar 

  23. Sun, X.S., Tan, V.B.C., Tay, T.E.: Micromechanics-based progressive failure analysis of fiber-reinforced composites with non-iterative element-failure method. Comput. Struct. 89, 1103–1116 (2011)

    Article  Google Scholar 

  24. Ha, S.K., Jin, K.K., Huang, Y.: Micro-mechanics of failure (MMF) for continuous fiber reinforced composites. J. Compos. Mater. 42, 1873–1895 (2008)

    Article  Google Scholar 

  25. Soutis, C., Beaumont, P.W.R.: Multi-Scale Modeling of Composite Material Systems: The Art of Predictive Damage Modeling. Woodhead, Cambridge (2005)

    Book  Google Scholar 

  26. Hillerborg, A., Modeer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–782 (1976)

    Article  Google Scholar 

  27. Xia, Z., Zhang, Y., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40, 1907–1921 (2003)

    Article  Google Scholar 

  28. Xia, Z., Zhou, C., Yong, Q., Wang, X.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 43, 266–278 (2006)

    Article  Google Scholar 

  29. Gorbatikh, L., Ivanov, D., Lomov, S.V., Verpoest, I.: On modeling of damage evolution in textile composites on meso-level via property degradation approach. Compos. Part: A 38, 2433–2442 (2007)

    Article  Google Scholar 

  30. Benzeggagh, M., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56, 439–449 (1996)

    Article  CAS  Google Scholar 

  31. Gibson, R.F.: Principles of Composite Material Mechanics. McGraw Hill, New York (1994)

    Google Scholar 

  32. Laffan, M.J., Pinho, S.T., Robinson, P., Iannucci, L.: Measurement of the in situ ply fracture toughness associated with model I fibre tensile failure in FRP. Part II: size and lay-up effects. Compos. Sci. Technol. 70, 614–621 (2010)

    Article  CAS  Google Scholar 

  33. Hallett, S.R., Green, B.G., Jiang, W.G., Wisnom, M.R.: An experimental and numerical investigation into the damage mechanisms in notched composites. Compos. Part A 70, 613–624 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Z. Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, J.Z., Sun, X.S., Ridha, M. et al. A Modeling Approach Across Length Scales for Progressive Failure Analysis of Woven Composites. Appl Compos Mater 20, 213–231 (2013). https://doi.org/10.1007/s10443-012-9266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-012-9266-7

Keywords

Navigation