Skip to main content
Log in

Large Time Behavior in a Fractional Chemotaxis-Navier-Stokes System with Competitive Kinetics

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we consider the two-species chemotaxis-Navier-Stokes system with Lotka-Volterra competitive kinetics and fractional diffusion of order \(s\in (\frac{1}{2},1)\)

$$ \left \{ \textstyle\begin{array}{l} (n_{1})_{t}+u\cdot \nabla n_{1}=-(-\Delta )^{s}n_{1}-\chi _{1}\nabla \cdot (n_{1}\nabla c)+\mu _{1}n_{1}(1-n_{1}-a_{1}n_{2}), \\ (n_{2})_{t}+u\cdot \nabla n_{2}=-(-\Delta )^{s}n_{2}-\chi _{2}\nabla \cdot (n_{2}\nabla c)+\mu _{2}n_{2}(1-a_{2}n_{1}-n_{2}), \\ c_{t}+u\cdot \nabla c=\Delta c-(\alpha n_{1}+\beta n_{2})c, \\ u_{t}+(u\cdot \nabla )u=\Delta u+\nabla P+(\gamma n_{1}+\delta n_{2}) \nabla \phi ,~~~\nabla \cdot u=0 \\ \end{array}\displaystyle \right . $$

on the three dimensional periodic torus \(\mathbb{T}^{3}\). Due to the influence of the Navier-Stokes equation, we cannot get the existence of the classical solution to above system in the three-dimensional case. Instead, we investigate the global existence of the weak solution of the system with weaker cell diffusion and arrive at the eventual smoothness of the solution. Furthermore, by constructing different Lyapunov functionals, we arrive at the following asymptotic stability:

• When \(a_{1},a_{2}\in (0,1)\), the solution components \((n_{1},n_{2},c,u)\rightarrow (\frac{1-a_{1}}{1-a_{1}a_{2}}, \frac{1-a_{2}}{1-a_{1}a_{2}},0,0)\) as \(t\rightarrow \infty \);

• When \(a_{1}\geq 1>a_{2}>0\), the solution components \((n_{1},n_{2},c,u)\rightarrow (0,1,0,0)\) as \(t\rightarrow \infty \);

• When \(a_{2}\geq 1>a_{1}>0\), the solution components \((n_{1},n_{2},c,u)\rightarrow (1,0,0,0)\) as \(t\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abelardo, D.R., Lucas, C.F.F., Élder, J.V.: Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete Contin. Dyn. Syst., Ser. B 24, 423–447 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Abelardo, D.R., Lucas, C.F.F., Élder, J.V.: Global existence for an attraction-repulsion chemotaxis-fluid system in a framework of Besov-Morrey type. J. Math. Fluid Mech. 22(4), 63 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amann, H.: Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat. Ser. III 35, 161–177 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Biler, P., Wu, G.: Two-dimensional chemotaxis models with fractional diffusion. Math. Methods Appl. Sci. 32, 112–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burczak, J., Granero-Belinchón, R.: Boundedness of large-time solutions to a chemotaxis model with nonlocal and semilinear flux. Topol. Methods Nonlinear Anal. 47, 369–387 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Burczak, J., Granero-Belinchón, R.: Global solutions for a supercritical drift-diffusion equation. Adv. Math. 295, 334–367 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burczak, J., Granero-Belinchón, R.: On a generalized doubly parabolic Keller-Segel system in one spatial dimension. Math. Models Methods Appl. Sci. 26, 111–160 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burczak, J., Granero-Belinchón, R.: Suppression of blow up by a logistic source in 2D Keller-Segel system with fractional dissipation. J. Differ. Equ. 263, 6115–6142 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burczak, J., Granero-Belinchón, R.: Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations. Discrete Contin. Dyn. Syst., Ser. S 13, 139–164 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Calderón, A.P., Zygmund, A.: Singular integrals and periodic functions. Stud. Math. 14, 249–271 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chae, M., Kang, K., Lee, J.: Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete Contin. Dyn. Syst. 33, 2271–2297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller-Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chae, M., Kang, K., Lee, J.: Asymptotic behaviors of solutions for an aerotaxis model coupled to fluid equations. J. Korean Math. Soc. 53, 127–146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Córdoba, A., Córdoba, D.: A pointwise estimate for fractionary derivatives with applications to partial differential equations. Proc. Natl. Acad. Sci. USA 100, 15316–15317 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Córdoba, A., Martínez, A.: A pointwise inequality for fractional Laplacians. Adv. Math. 280, 79–85 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ding, M., Lankeit, J.: Generalized solution to a chemotaxis-Navier-Stokes system with arbitrary superlinear degradation. 2103.17199

  18. Duan, R., Lorz, A., Markowich, P.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Escudero, C.: The fractional Keller-Segel model. Nonlinearity 19, 2909–2918 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garfinkel, A., Tintut, Y., Petrasek, D., Boström, K., Demer, L.L.: Pattern formation by vascular mesenchymal cells. Proc. Natl. Acad. Sci. 101, 9247–9250 (2004)

    Article  Google Scholar 

  21. Giga, Y., Sohr, H.: Abstract \(L^{p}\) estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Granero-Belinchón, R.: On the fractional Fisher information with applications to a hyperbolic-parabolic system of chemotaxis. J. Differ. Equ. 262, 3250–3283 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, H., Zhang, Q.: Global existence of weak solutions for the 3D chemotaxis-Navier-Stokes equations. Nonlinear Anal., Real World Appl. 35, 336–349 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hieber, M., Prüss, J.: Heat kernels and maximal \(L^{p}-L^{q}\) estimate for parabolic evolution equations. Commun. Partial Differ. Equ. 22, 1647–1669 (1997)

    Article  MATH  Google Scholar 

  25. Hirata, M., Kurima, S., Mizukami, M., Yokota, T.: Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics. J. Differ. Equ. 263, 470–490 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hirata, M., Kurima, S., Mizukami, M., Yokota, T.: Boundedness and stabilization in a three-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics. 1710.00957

  27. Huang, H., Liu, J.: Well-posedness for Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinet. Relat. Models 9, 715–748 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jeong, E., Kim, J., Lee, J.: Stabilization in a two dimensional two-species aerotaxis-Navier-Stokes system. Nonlinear Anal., Real World Appl. 57, 103187 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang, K., Liu, Z., Zhou, L.: Global existence and asymptotic behavior of the fractional chemotaxis system with signal-dependent sensitivity. Comput. Math. Appl. 78, 3450–3470 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jin, H., Xiang, T.: Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes system with competitive kinetics. Discrete Contin. Dyn. Syst., Ser. B 24, 1919–1942 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Keller, E., Segel, L.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  32. Keller, E., Segel, L.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  MATH  Google Scholar 

  33. Kenig, C., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4, 323–347 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lankeit, J.: Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Models Methods Appl. Sci. 26, 2071–2109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lei, Y., Liu, Z., Zhou, L.: Existence and global asymptotic stability in a fractional double parabolic chemotaxis system with logistic source. Nonlinear Anal. 217, 112750 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lei, Y., Liu, Z., Zhou, L.: Large time behavior in a fractional chemotaxis-Navier-Stokes system with logistic source. Nonlinear Anal., Real World Appl. 63, 103389 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, Y., Li, Y.: Global boundedness of solutions for the chemotaxis-Navier-Stokes system in \(\mathbb{R}^{2}\). J. Differ. Equ. 261, 6570–6613 (2016)

    Article  MATH  Google Scholar 

  38. Liu, J., Lors, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28, 643–652 (2011)

    Article  MathSciNet  Google Scholar 

  39. Nie, Y., Zheng, X.: Global well-posedness for the two-dimensional coupled chemotaxis-generalized Navier-Stokes system with logistic growth. J. Differ. Equ. 269, 5379–5433 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3) 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  41. Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser/Springer Basel AG, Basel (2001), x+367 pp.

    MATH  Google Scholar 

  42. Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46, 1969–2007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tan, Z., Zhou, J.: Decay estimate of solutions to the coupled chemotaxis-fluid equations in \(\mathbb{R}^{3}\). Nonlinear Anal., Real World Appl. 43, 323–347 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system. Z. Angew. Math. Phys. 67, 138 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Glodstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. 102, 2277–2282 (2005)

    Article  MATH  Google Scholar 

  46. Wang, Y.: Global solvability and eventual smoothness in a chemotaxis-fluid system with weak logistic-type degradation. Math. Models Methods Appl. Sci. 30, 1217–1252 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, X., Liu, Z., Zhou, L.: Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete Contin. Dyn. Syst., Ser. B 23, 4003–4020 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Wang, Y., Winkler, M., Xiang, Z.: Global solvability in a three-dimensional Keller-Segel-Stokes system involving arbitrary superlinear logistic degradation. Adv. Nonlinear Anal. 10, 707–731 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Winkler, M.: Global large-data solutions in a chemotaxis-Navier-Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33, 1329–1352 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? Trans. Am. Math. Soc. 369, 3067–3125 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: global weak solutions and asymptotic stabilization. J. Funct. Anal. 276, 1339–1401 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Winkler, M.: Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems? Int. Math. Res. Not. 11, 8106–8152 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  56. Winkler, M.: Reaction-driven relaxation in three-dimensional Keller-Segel-Navier-Stokes interaction. Commun. Math. Phys. 389(1), 439–489 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wu, G., Zheng, X.: On the well-posedness for Keller-Segel system with fractional diffusion. Math. Methods Appl. Sci. 34, 1739–1750 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhang, Q., Li, Y.: Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system. Discrete Contin. Dyn. Syst., Ser. B 20, 2751–2759 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhang, W., Liu, Z., Zhou, L.: Global existence and asymptotic behavior of classical solutions to a fractional logistic Keller-Segel system. Nonlinear Anal. 189, 111624 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zheng, P., Mu, C., Hu, X.: Global dynamics for an attraction-repulsion chemotaxis-(Navier)-Stokes system with logistic source. Nonlinear Anal., Real World Appl. 45, 557–580 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zheng, P., Willie, R., Mu, C.: Global boundedness and stabilization in a two-competing-species chemotaxis-fluid system with two chemicals. J. Dyn. Differ. Equ. 32, 1371–1399 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhu, S., Liu, Z., Zhou, L.: Global existence and asymptotic stability of the fractional chemotaxis-fluid system in \(\mathbb{R}^{3}\). Nonlinear Anal. 183, 149–190 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhu, S., Liu, Z., Zhou, L.: Decay estimates for the classical solution of Keller-Segel system with fractional Laplacian in higher dimensions. Appl. Anal. 99, 447–461 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is partially supported by National Natural Science Foundation of China (11771380) and Natural Science Foundation of Jiangsu Province (BK20191436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhu Lei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Liu, Z. & Zhou, L. Large Time Behavior in a Fractional Chemotaxis-Navier-Stokes System with Competitive Kinetics. Acta Appl Math 179, 3 (2022). https://doi.org/10.1007/s10440-022-00489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-022-00489-8

Keywords

Navigation