Skip to main content
Log in

Development and Characterization of Heparin-Containing Hydrogel/3D-Printed Scaffold Composites for Craniofacial Reconstruction

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Regeneration of cartilage and bone tissues remains challenging in tissue engineering due to their complex structures, and the need for both mechanical support and delivery of biological repair stimuli. Therefore, the goal of this study was to develop a composite scaffold platform for anatomic chondral and osteochondral repair using heparin-based hydrogels to deliver small molecules within 3D-printed porous scaffolds that provide structure, stiffness, and controlled biologic delivery. We designed a mold-injection system to combine hydrolytically degradable hydrogels and 3D-printed scaffolds that could be employed rapidly (< 30 min) in operating room settings (~23 °C). Micro-CT analysis demonstrated the effectiveness of our injection system through homogeneously distributed hydrogel within the pores of the scaffolds. Hydrogels and composite scaffolds exhibited efficient loading (~94%) of a small positively charged heparin-binding molecule (crystal violet) with sustained release over 14 days and showed high viability of encapsulated porcine chondrocytes over 7 days. Compression testing demonstrated nonlinear viscoelastic behavior where tangent stiffness decreased with scaffold porosity (porous scaffold tangent stiffness: 70%: 4.9 MPa, 80%: 1.5 MPa, and 90%: 0.20 MPa) but relaxation was not affected. Lower-porosity scaffolds (70%) showed stiffness similar to lower ranges of trabecular bone (4–8 MPa) while higher-porosity scaffolds (80% and 90%) showed stiffness similar to auricular cartilage (0.16–2 MPa). Ultimately, this rapid composite scaffold fabrication method may be employed in the operating room and utilized to control biologic delivery within load-bearing scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. De Mori, A., et al. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering. Polymers (Basel). 10(3):285, 2018.

    Article  PubMed  Google Scholar 

  2. De Witte, T.-M., et al. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regener. Biomater. 5(4):197–211, 2018.

    Article  Google Scholar 

  3. Kuć, J., K. D. Szarejko, and M. Gołębiewska. The prevalence and overlaps of temporomandibular disorders in patients with myofascial pain with referral—a pilot study. Int. J. Environ. Res. Public Health. 18(18):9842, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Owsley, T. G., et al. Otoplastic surgery for the protruding ear. In: Peterson’s Principles of Oral and Maxillofacial Surgery, edited by M. Miloro, et al. Cham: Springer International Publishing, 2022, pp. 2259–2272.

    Chapter  Google Scholar 

  5. Mladina, R., et al. Nasal septal deformities in ear, nose, and throat patients: an international study. Am. J. Otolaryngol. 29(2):75–82, 2008.

    Article  PubMed  Google Scholar 

  6. Fung, Y. C. Bone and cartilage. In: Biomechanics: Mechanical Properties of Living Tissues, edited by Y. C. Fung. New York: Springer, 1993, pp. 500–544.

    Chapter  Google Scholar 

  7. Chen, X., et al. Determining tension-compression nonlinear mechanical properties of articular cartilage from indentation testing. Ann. Biomed. Eng. 44(4):1148–1158, 2016.

    Article  PubMed  Google Scholar 

  8. Danso, E., et al. Comparison of nonlinear mechanical properties of bovine articular cartilage and meniscus. J. Biomech. 47(1):200–206, 2014.

    Article  CAS  PubMed  Google Scholar 

  9. Jammalamadaka, U., and K. Tappa. Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater. 2018. https://doi.org/10.3390/jfb9010022.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ballyns, J. J., et al. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng. A. 14(7):1195–1202, 2008.

    Article  Google Scholar 

  11. Maletius, W., and K. Messner. The effect of partial meniscectomy on the long-term prognosis of knees with localized, severe chondral damage: a twelve-to fifteen-year followup. Am. J. Sports Med. 24(3):258–262, 1996.

    Article  CAS  PubMed  Google Scholar 

  12. Muzzarelli, R. A., et al. Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohyd. Polym. 89(3):723–739, 2012.

    Article  CAS  Google Scholar 

  13. Choe, R., et al. Biomechanical aspects of osteochondral regeneration: implications and strategies for 3D bioprinting. Tissue Eng. 2021:10, 2021.

    Google Scholar 

  14. Lonergan, A. R., and A. R. Scott. Autologous costochondral graft harvest in children. Int. J. Pediatr. Otorhinolaryngol.135:110111, 2020.

    Article  PubMed  Google Scholar 

  15. Read-Fuller, A. M., et al. The use of allogeneic cartilage for grafting in functional and reconstructive rhinoplasty. J. Oral Maxillofacial Surg. 76(7):15601–15607, 2018.

    Article  Google Scholar 

  16. Wolford, L. M. Autologous fat grafts placed around temporomandibular joint (TMJ) total joint prostheses to prevent heterotopic bone. In: Autologous Fat Transfer, Springer, 2010, pp. 361–382.

    Chapter  Google Scholar 

  17. Rea, D. N. B. W. The temporomandibular joint implant controversy: a review of autogenous/alloplastic materials and their complications. J. Nutrit. Environ. Med. 8(3):289–300, 1998.

    Article  Google Scholar 

  18. Bell, R. B., et al. Staged reconstruction of the severely atrophic mandible with autogenous bone graft and endosteal implants. J. Oral Maxillofacial Surg. 60(10):1135–1141, 2002.

    Article  Google Scholar 

  19. Brodland, D. G. Auricular reconstruction. Dermatol. Clin. 23(1):23–41, 2005.

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen, L. H., et al. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials. 32(29):6946–6952, 2011.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, F., et al. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv. Funct. Mater. 30(36):2003451, 2020.

    Article  CAS  Google Scholar 

  22. Kunisch, E., et al. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication.11(1):015001, 2018.

    Article  PubMed  Google Scholar 

  23. Korpayev, S., et al. Chitosan/collagen based biomimetic osteochondral tissue constructs: a growth factor-free approach. Int. J. Biol. Macromol. 156:681–690, 2020.

    Article  CAS  PubMed  Google Scholar 

  24. Yang, J., et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 57:1–25, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liao, J., et al. The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Res. 5(1):1–15, 2017.

    Article  CAS  Google Scholar 

  26. Drury, J. L., and D. J. Mooney. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 24(24):4337–4351, 2003.

    Article  CAS  PubMed  Google Scholar 

  27. Spicer, C. D. Hydrogel scaffolds for tissue engineering: The importance of polymer choice. Polym. Chem. 11(2):184–219, 2020.

    Article  CAS  Google Scholar 

  28. Jo, H., et al. Recent strategies in fabrication of gradient hydrogels for tissue engineering applications. Macromol. Biosci. 20(3):1900300, 2020.

    Article  CAS  Google Scholar 

  29. Kim, H. D., et al. Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering. ACS Appl. Mater. Interf. 9(26):21639–21650, 2017.

    Article  CAS  Google Scholar 

  30. Kim, S., et al. Enhanced skull bone regeneration by sustained release of BMP-2 in interpenetrating composite hydrogels. Biomacromolecules. 19(11):4239–4249, 2018.

    Article  CAS  PubMed  Google Scholar 

  31. Peppas, N., et al. Physicochemical foundations and structural design of hydrogels in medicine and biology. Ann. Rev. Biomed. Eng. 2(1):9–29, 2000.

    Article  CAS  Google Scholar 

  32. Van de Wetering, P., et al. Poly (ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins. J. Control. Release. 102(3):619–627, 2005.

    Article  PubMed  Google Scholar 

  33. Flynn, J., et al. Tuning the strength and swelling of an injectable polysaccharide hydrogel and the subsequent release of a broad spectrum bacteriocin, nisin A. J. Mater. Chem. B. 8(18):4029–4038, 2020.

    Article  CAS  PubMed  Google Scholar 

  34. Hudalla, G. A., T. S. Eng, and W. L. Murphy. An approach to modulate degradation and mesenchymal stem cell behavior in poly (ethylene glycol) networks. Biomacromolecules. 9(3):842–849, 2008.

    Article  CAS  PubMed  Google Scholar 

  35. Peng, Y., L. E. Tellier, and J. S. Temenoff. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery. Biomater Sci. 4(9):1371–1380, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tellier, L., et al. Localized SDF-1α delivery increases pro-healing bone marrow-derived cells in the supraspinatus muscle following severe rotator cuff injury. Regener. Eng. Transl. Med. 4(2):92–103, 2018.

    Article  CAS  Google Scholar 

  37. Tellier, L. E., et al. Hydrolysis and sulfation pattern effects on release of bioactive bone morphogenetic protein-2 from heparin-based microparticles. J. Mater. Chem. B. 3(40):8001–8009, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hettiaratchi, M. H., et al. Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration. Sci. Adv. 6(1):e1240, 2020.

    Article  Google Scholar 

  39. Ao, Q., et al. Fibrin glue/fibronectin/heparin-based delivery system of BMP2 induces osteogenesis in MC3T3-E1 cells and bone formation in rat calvarial critical-sized defects. ACS Appl. Mater. Interf. 12(11):13400–13410, 2020.

    Article  CAS  Google Scholar 

  40. Krieger, J., et al. Spatially localized recruitment of anti-inflammatory monocytes by SDF-1α-releasing hydrogels enhances microvascular network remodeling. Biomaterials. 77:280–290, 2016.

    Article  CAS  PubMed  Google Scholar 

  41. Sadir, R., et al. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J. Biol. Chem. 279(42):43854–43860, 2004.

    Article  CAS  PubMed  Google Scholar 

  42. Purcell, B. P., et al. Synergistic effects of SDF-1α chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium. Biomaterials. 33(31):7849–7857, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Danek, C. Recent advances and future challenges in the additive manufacturing of hydrogels. Polymers. 14(3):494, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chaudhuri, O. Viscoelastic hydrogels for 3D cell culture. Biomater. Sci. 5(8):1480–1490, 2017.

    Article  CAS  PubMed  Google Scholar 

  45. Cohen, B. P., et al. Long-term morphological and microarchitectural stability of tissue-engineered, patient-specific auricles in vivo. Tissue Eng. A. 22(5–6):461–468, 2016.

    Article  CAS  Google Scholar 

  46. Gauvin, R., et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials. 33(15):3824–3834, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4(7):518–524, 2005.

    Article  CAS  PubMed  Google Scholar 

  48. Liao, E., et al. Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng. 13(3):537–550, 2007.

    Article  CAS  PubMed  Google Scholar 

  49. Boere, K. W. M., et al. Biofabrication of reinforced 3D-scaffolds using two-component hydrogels. J. Mater. Chem. B. 3(46):9067–9078, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Williams, J. M., et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 26(23):4817–4827, 2005.

    Article  CAS  PubMed  Google Scholar 

  51. Mazzoli, A. Selective laser sintering in biomedical engineering. Med. Boil. Eng. Comput. 51(3):245–256, 2013.

    Article  Google Scholar 

  52. Patel, J. J., C. L. Flanagan, and S. J. Hollister. Bone morphogenetic protein-2 adsorption onto poly-ɛ-caprolactone better preserves bioactivity in vitro and produces more bone in vivo than conjugation under clinically relevant loading scenarios. Tissue Eng. C: Methods. 21(5):489–498, 2015.

    Article  CAS  Google Scholar 

  53. Morrison, R. J., et al. Treatment of severe acquired tracheomalacia with a patient-specific, 3D-printed, permanent tracheal splint. JAMA Otolaryngol. Head Neck Surg. 143(5):523–525, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Morrison, R. J., et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci. Transl. Med. 7(285):285ra64, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ramaraju, H., et al. Evaluating directional dependency of selective laser sintered patient specific biodegradable devices to improve predictive modeling and design verification. Ann. Biomed. Eng. 49(9):2579–2589, 2021.

    Article  PubMed  Google Scholar 

  56. Woodruff, M. A., and D. W. Hutmacher. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 35(10):1217–1256, 2010.

    Article  CAS  Google Scholar 

  57. Hahn, M. S., et al. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials. 27(12):2519–2524, 2006.

    Article  CAS  PubMed  Google Scholar 

  58. Seto, S. P., T. Miller, and J. S. Temenoff. Effect of selective heparin desulfation on preservation of bone morphogenetic protein-2 bioactivity after thermal stress. Bioconjug. Chem. 26(2):286–293, 2015.

    Article  CAS  PubMed  Google Scholar 

  59. Yang, L., C. Yan, and Y. Shi. Fracture mechanism analysis of Schoen gyroid cellular structures manufactured by selective laser melting. In: 2017 International Solid Freeform Fabrication Symposium,University of Texas at Austin, 2017.

    Google Scholar 

  60. Hollister, S. J., et al. Design control for clinical translation of 3D printed modular scaffolds. Ann. Biomed. Eng. 43(3):774–786, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hollister, S. J., et al. Integrating image-based design and 3D biomaterial printing to create patient specific devices within a design control framework for clinical translation. ACS Biomater. Sci. Eng. 2(10):1827–1836, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chang, B., et al. Hybrid three-dimensional–printed ear tissue scaffold with autologous cartilage mitigates soft tissue complications. Laryngoscope. 131(5):1008–1015, 2021.

    Article  CAS  PubMed  Google Scholar 

  63. Lee, C. H., et al. Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo. Tissue Eng. A. 15(12):3923–3930, 2009.

    Article  CAS  Google Scholar 

  64. Keys, K. B., F. M. Andreopoulos, and N. A. Peppas. Poly (ethylene glycol) star polymer hydrogels. Macromolecules. 31(23):8149–8156, 1998.

    Article  CAS  Google Scholar 

  65. Gao, G., et al. Bioprinting cartilage tissue from mesenchymal stem cells and PEG hydrogel. Cell Cult. Methods Protocols. 2017:391–398, 2017.

    Article  Google Scholar 

  66. Qiu, Y., et al. PEG-based hydrogels with tunable degradation characteristics to control delivery of marrow stromal cells for tendon overuse injuries. Acta Biomater. 7(3):959–966, 2011.

    Article  CAS  PubMed  Google Scholar 

  67. Hao, Y., and C. C. Lin. Degradable thiol-acrylate hydrogels as tunable matrices for three-dimensional hepatic culture. J. biomed. Mater. Res. A. 102(11):3813–3827, 2014.

    Article  PubMed  Google Scholar 

  68. Chang, B., et al. Evaluation of human nasal cartilage nonlinear and rate dependent mechanical properties. J. Biomech.100:109549, 2020.

    Article  PubMed  Google Scholar 

  69. Inoue, Y., and K. Nagasawa. Selective N-desulfation of heparin with dimethyl sulfoxide containing water or methanol. Carbohyd. Res. 46(1):87–95, 1976.

    Article  CAS  Google Scholar 

  70. Nakamura, S., et al. Controlled release of fibroblast growth factor-2 from an injectable 6-O-desulfated heparin hydrogel and subsequent effect on in vivo vascularization. J. Biomed. Mater. Res. A. 78(2):364–371, 2006.

    Article  PubMed  Google Scholar 

  71. Orr, T., et al. Compressive properties of cancellous bone defects in a rabbit model treated with particles of natural bone mineral and synthetic hydroxyapatite. Biomaterials. 22(14):1953–1959, 2001.

    Article  CAS  PubMed  Google Scholar 

  72. Liu, F., et al. Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting. Materials. 11(3):374, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Little, C. J., N. K. Bawolin, and X. Chen. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng. B: Rev. 17(4):213–227, 2011.

    Article  CAS  Google Scholar 

  74. Mansour, J. M. Kinesiology: the mechanics and pathomechanics of human movement. Biomech. Cartilage. 2:66–79, 2003.

    Google Scholar 

  75. Chiu, L. L., et al. Comparisons of auricular cartilage tissues from different species. Ann. Otol. Rhinol. Laryngol. 126(12):819–828, 2017.

    Article  PubMed  Google Scholar 

  76. Zopf, D. A., et al. Biomechanical evaluation of human and porcine auricular cartilage. Laryngoscope. 125(8):E262–E268, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pappa, A. K., et al. A pilot study comparing mechanical properties of tissue-engineered cartilages and various endogenous cartilages. Clin. Biomech. 50:105–109, 2017.

    Article  Google Scholar 

  78. Griffin, M., et al. Biomechanical characterisation of the human auricular cartilages; implications for tissue engineering. Ann. Biomed. Eng. 44(12):3460–3467, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Staudenmaier, R., et al. Flap prefabrication and prelamination with tissue-engineered cartilage. J. Reconstr. Microsurg. 21(07):555–564, 2004.

    Article  Google Scholar 

  80. Staudenmaier, R., et al. Tissue-engineered cartilage in a prefabricated free skin flap. HNO. 52:510–517, 2004.

    CAS  PubMed  Google Scholar 

  81. Bomhard, A. V., et al. Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle–a model tested in rabbits. PloS ONE. 8(8):e71667, 2013.

    Article  Google Scholar 

  82. Redenski, I., et al. Engineered vascularized flaps, composed of polymeric soft tissue and live bone, repair complex tibial defects. Adv. Funct. Mater. 31(44):2008687, 2021.

    Article  CAS  Google Scholar 

  83. Bae, S. E., et al. Controlled release of bone morphogenetic protein (BMP)-2 from nanocomplex incorporated on hydroxyapatite-formed titanium surface. J. Control. Release. 160(3):676–684, 2012.

    Article  CAS  PubMed  Google Scholar 

  84. Hettiaratchi, M. H., et al. Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2. Biomaterials. 35(25):7228–7238, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Olthof, M. G., et al. Bone morphogenetic protein-2 release profile modulates bone formation in phosphorylated hydrogel. J. Tissue Eng. Regener. Med. 12(6):1339–1351, 2018.

    Article  CAS  Google Scholar 

  86. DeFail, A. J., et al. Controlled release of bioactive TGF-β1 from microspheres embedded within biodegradable hydrogels. Biomaterials. 27(8):1579–1585, 2006.

    Article  CAS  PubMed  Google Scholar 

  87. Yoon, J. P., et al. Sustained delivery of transforming growth factor β1 by use of absorbable alginate scaffold enhances rotator cuff healing in a rabbit model. Am. J. Sports Med. 46(6):1441–1450, 2018.

    Article  PubMed  Google Scholar 

  88. Scheiner, K. C., et al. Sustained release of vascular endothelial growth factor from poly (ε-caprolactone-PEG-ε-caprolactone)-b-poly (l-lactide) multiblock copolymer microspheres. ACS Omega. 4(7):11481–11492, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Davies, N., et al. The dosage dependence of VEGF stimulation on scaffold neovascularisation. Biomaterials. 29(26):3531–3538, 2008.

    Article  CAS  PubMed  Google Scholar 

  90. Temenoff, J. S., and A. G. Mikos. Biomaterials: The Intersection of Biology and Materials Science. London: Pearson/Prentice Hall, 2008.

    Google Scholar 

  91. Lee, S., X. Tong, and F. Yang. The effects of varying poly (ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels. Acta Biomater. 10(10):4167–4174, 2014.

    Article  CAS  PubMed  Google Scholar 

  92. Holloway, J. L., et al. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J. Control. Release. 191:63–70, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Parlato, M., et al. Poly (ethylene glycol) hydrogels with adaptable mechanical and degradation properties for use in biomedical applications. Macromol. Biosci. 14(5):687–698, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Roman, M., and W. T. Winter. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules. 5(5):1671–1677, 2004.

    Article  CAS  PubMed  Google Scholar 

  95. Chu, Y., et al. pH-induced swelling kinetics of polyelectrolyte hydrogels. J. Appl. Polym. Sci. 58(12):2161–2176, 1995.

    Article  CAS  Google Scholar 

  96. Dalton, E., Z. Morris, and N. Ayres. Synthesis and characterization of sulfated-lactose polyurethane hydrogels. Polym. Chem. 13(20):2933–2940, 2022.

    Article  CAS  Google Scholar 

  97. Roy, S., et al. Bioactivity screening of partially desulfated low-molecular-weight heparins: a structure/activity relationship study. Glycobiology. 21(9):1194–1205, 2011.

    Article  CAS  PubMed  Google Scholar 

  98. Ladet, S., L. David, and A. Domard. Multi-membrane hydrogels. Nature. 452(7183):76–79, 2008.

    Article  CAS  PubMed  Google Scholar 

  99. Zucchelli, A., et al. Electrospun nanofibers for enhancing structural performance of composite materials. Polym. Adv. Technol. 22(3):339–349, 2011.

    Article  CAS  Google Scholar 

  100. Nguyen, K. T., and J. L. West. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 23(22):4307–4314, 2002.

    Article  CAS  PubMed  Google Scholar 

  101. Jang, C. H., Y. Koo, and G. Kim. ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration. Carbohyd. Polym.248:116776, 2020.

    Article  CAS  Google Scholar 

  102. Ahlfeld, T., et al. Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel. Ann. Biomed. Eng. 45(1):224–236, 2017.

    Article  PubMed  Google Scholar 

  103. Van Belleghem, S., et al. Hybrid 3D printing of synthetic and cell-laden bioinks for shape retaining soft tissue grafts. Adv. Funct. Mater. 30(3):1907145, 2020.

    Article  PubMed  Google Scholar 

  104. Visscher, D. O., et al. Design and fabrication of a hybrid alginate hydrogel/poly (ε-caprolactone) mold for auricular cartilage reconstruction. J. Biomed. Mater. Res. B: Appl. Biomater. 107(5):1711–1721, 2019.

    Article  CAS  PubMed  Google Scholar 

  105. Hernandez, I., A. Kumar, and B. Joddar. A bioactive hydrogel and 3D printed polycaprolactone system for bone tissue engineering. Gels. 3(3):26, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  106. She, Y., et al. 3D printed biomimetic PCL Scaffold as framework interspersed with collagen for long segment tracheal replacement. Front. Cell Develop. Biol. 2021. https://doi.org/10.3389/fcell.2021.629796.

    Article  Google Scholar 

  107. Chen, C. H., et al. Selective laser sintered poly-epsilon-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication.6(1):015004, 2014.

    Article  CAS  PubMed  Google Scholar 

  108. Lee, M. Y., et al. Laser sintered porous polycaprolacone scaffolds loaded with hyaluronic acid and gelatin-grafted thermoresponsive hydrogel for cartilage tissue engineering. Biomed. Mater. Eng. 23(6):533–543, 2013.

    CAS  PubMed  Google Scholar 

  109. Bas, O., et al. Biofabricated soft network composites for cartilage tissue engineering. Biofabrication.9(2):025014, 2017.

    Article  PubMed  Google Scholar 

  110. Hutmacher, D. W., et al. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55(2):203–216, 2001.

    Article  CAS  PubMed  Google Scholar 

  111. Dong, L., et al. 3D-printed poly (ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci. Rep. 7(1):1–9, 2017.

    Article  Google Scholar 

  112. Fazeli, N., et al. 3D-printed PCL scaffolds coated with nanobioceramics enhance osteogenic differentiation of stem cells. ACS Omega. 2021. https://doi.org/10.1021/acsomega.1c04015.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Seyedsalehi, A., et al. Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds. Sci. Rep. 10(1):1–14, 2020.

    Article  Google Scholar 

  114. Abueidda, D. W., et al. Mechanical properties of 3D printed polymeric Gyroid cellular structures: experimental and finite element study. Mater. Design.165:107597, 2019.

    Article  Google Scholar 

  115. Jung, Y., and S. Torquato. Fluid permeabilities of triply periodic minimal surfaces. Phys. Rev. E.72(5):056319, 2005.

    Article  CAS  Google Scholar 

  116. Liu, F., et al. Additively manufactured continuous cell-size gradient porous scaffolds: pore characteristics, mechanical properties and biological responses in vitro. Materials. 13(11):2589, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kapfer, S. C., et al. Minimal surface scaffold designs for tissue engineering. Biomaterials. 32(29):6875–6882, 2011.

    Article  CAS  PubMed  Google Scholar 

  118. Torres-Rendon, J. G., et al. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Adv. Mater. 27(19):2989–2995, 2015.

    Article  CAS  PubMed  Google Scholar 

  119. Gao, J., P. M. Crapo, and Y. Wang. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng. 12(4):917–925, 2006.

    Article  CAS  PubMed  Google Scholar 

  120. Bryant, S. J., et al. Photo-patterning of porous hydrogels for tissue engineering. Biomaterials. 28(19):2978–2986, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Johnson, T., et al. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens. Bio-med. Mater. Eng. 20(2):107–118, 2010.

    Article  CAS  Google Scholar 

  122. Hu, K., et al. Effects of condylar fibrocartilage on the biomechanical loading of the human temporomandibular joint in a three-dimensional, nonlinear finite element model. Med. Eng. Phys. 25(2):107–113, 2003.

    Article  PubMed  Google Scholar 

  123. Griffin, M., et al. Comparison of the compressive mechanical properties of auricular and costal cartilage from patients with microtia. J. Biomech.103:109688, 2020.

    Article  CAS  PubMed  Google Scholar 

  124. Soufivand, A. A., et al. Prediction of mechanical behavior of 3D bioprinted tissue-engineered scaffolds using finite element method (FEM) analysis. Addit. Manuf.33:101181, 2020.

    Google Scholar 

  125. Alkan, Z., et al. Tensile characteristics of costal and septal cartilages used as graft materials. Archiv. Facial Plastic Surg. 13(5):322–326, 2011.

    Article  Google Scholar 

  126. Griffin, M., et al. Biomechanical characterization of human soft tissues using indentation and tensile testing. J. Visualized Exp.118:e54872, 2016.

    Google Scholar 

  127. Al Dayeh, A. A., and S. W. Herring. Compressive and tensile mechanical properties of the porcine nasal septum. J. Biomech. 47(1):154–161, 2014.

    Article  PubMed  Google Scholar 

  128. Tanaka, E., et al. Strain-rate effect on the biomechanical response of bovine temporomandibular joint disk under compression. J. Biomed. Mater. Res. A. 67(3):761–765, 2003.

    Article  PubMed  Google Scholar 

  129. Ouyang, J., et al. Biomechanical characteristics of human trabecular bone. Clin. Biomech. 12(7–8):522–524, 1997.

    Article  CAS  Google Scholar 

  130. van Rietbergen, B., et al. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28(1):69–81, 1995.

    Article  PubMed  Google Scholar 

  131. Rath, A., S. Mathesan, and P. Ghosh. Nanomechanical characterization and molecular mechanism study of nanoparticle reinforced and cross-linked chitosan biopolymer. J. Mech. Behav. Biomed. Mater. 55:42–52, 2016.

    Article  CAS  Google Scholar 

  132. Zhang, J., et al. Assigning viscoelastic and hyperelastic properties to the middle-ear soft tissues for sound transmission. Biomech. Model. Mechanobiol. 19(3):957–970, 2020.

    Article  PubMed  Google Scholar 

  133. Allen, K. D., and K. A. Athanasiou. Viscoelastic characterization of the porcine temporomandibular joint disc under unconfined compression. J. Biomech. 39(2):312–322, 2006.

    Article  PubMed  Google Scholar 

  134. Li, L., M. Buschmann, and A. Shirazi-Adl. Strain-rate dependent stiffness of articular cartilage in unconfined compression. J. Biomech. Eng. 125(2):161–168, 2003.

    Article  CAS  PubMed  Google Scholar 

  135. Bredbenner, T. L., and D. T. Davy. The effect of damage on the viscoelastic behavior of human vertebral trabecular bone. J. Biomech. Eng. 128:473, 2006.

    Article  PubMed  Google Scholar 

  136. Quaglini, V., V. La Russa, and S. Corneo. Nonlinear stress relaxation of trabecular bone. Mech. Res. Commun. 36(3):275–283, 2009.

    Article  Google Scholar 

  137. Gandhi, N. S., and R. L. Mancera. Prediction of heparin binding sites in bone morphogenetic proteins (BMPs). Biochim. Biophys. Acta Proteins Proteom. 1824(12):1374–1381, 2012.

    Article  CAS  Google Scholar 

  138. McCaffrey, T. A., D. J. Falcone, and B. Du. Transforming growth factor-β1 is a heparin-binding protein: identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-β1. J. Cell. Physiol. 152(2):430–440, 1992.

    Article  CAS  PubMed  Google Scholar 

  139. Fairbrother, W. J., et al. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure. 6(5):637–648, 1998.

    Article  CAS  PubMed  Google Scholar 

  140. Kim, K., et al. Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J. Control. Release. 168(2):166–178, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, H., et al. Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold. Coll. Surfaces B Biointerf. 141:491–498, 2016.

    Article  CAS  Google Scholar 

  142. Jeon, O., et al. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J. Control. Release. 154(3):258–266, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tae, G., et al. PEG-cross-linked heparin is an affinity hydrogel for sustained release of vascular endothelial growth factor. J. Biomater. Sci. Polym. Ed. 17(1–2):187–197, 2006.

    Article  CAS  PubMed  Google Scholar 

  144. Schirmer, L., et al. StarPEG-heparin hydrogels to protect and sustainably deliver IL-4. Adv. Healthcare Mater. 5(24):3157–3164, 2016.

    Article  CAS  Google Scholar 

  145. Freeman, I., A. Kedem, and S. Cohen. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials. 29(22):3260–3268, 2008.

    Article  CAS  PubMed  Google Scholar 

  146. Tellier, L. E., et al. Intra-articular TSG-6 delivery from heparin-based microparticles reduces cartilage damage in a rat model of osteoarthritis. Biomater. Sci. 6(5):1159–1167, 2018.

    Article  CAS  PubMed  Google Scholar 

  147. Seto, S. P., M. E. Casas, and J. S. Temenoff. Differentiation of mesenchymal stem cells in heparin-containing hydrogels via coculture with osteoblasts. Cell Tissue Res. 347(3):589–601, 2012.

    Article  CAS  PubMed  Google Scholar 

  148. Lei, J., W. L. Murphy, and J. S. Temenoff. Combination of heparin binding peptide and heparin cell surface coatings for mesenchymal stem cell spheroid assembly. Bioconjugate Chem. 29(4):878–884, 2018.

    Article  CAS  Google Scholar 

  149. Bandyopadhyay, A., B. B. Mandal, and N. Bhardwaj. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. J. Biomed. Mater. Res. A. 110(4):884–898, 2022.

    Article  CAS  PubMed  Google Scholar 

  150. Zhu, S., et al. 3D-printed extracellular matrix/polyethylene glycol diacrylate hydrogel incorporating the anti-inflammatory phytomolecule honokiol for regeneration of osteochondral defects. Am. J Sports Med. 48(11):2808–2818, 2020.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sarah Jo Tucker for her assistance in printing and cleaning the 3D-printed scaffolds and Dr. Laxminarayanan Krishnan for his guidance in performing µCT scans and analysis. This work was supported by the Carol Ann and David D. Flanagan Professorship and Patsy and Alan Dorris Chair in Pediatric Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott J. Hollister or Johnna S. Temenoff.

Ethics declarations

Conflict of interest

This work was supported by the Carol Ann and David D. Flanagan Professorship and Patsy and Alan Dorris Chair in Pediatric Technology. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 856.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, N.E., Ellerbe, L.R., Hollister, S.J. et al. Development and Characterization of Heparin-Containing Hydrogel/3D-Printed Scaffold Composites for Craniofacial Reconstruction. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03530-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03530-z

Keywords

Navigation