Skip to main content
Log in

Structural and Mechanical Properties of Human Superficial Femoral and Popliteal Arteries

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The femoropopliteal artery (FPA) is the main artery in the lower limb. It supplies blood to the leg muscles and undergoes complex deformations during limb flexion. Atherosclerotic disease of the FPA (peripheral arterial disease, PAD) is a major public health burden, and despite advances in surgical and interventional therapies, the clinical outcomes of PAD repairs continue to be suboptimal, particularly in challenging calcified lesions and biomechanically active locations. A better understanding of human FPA mechanical and structural characteristics in relation to age, risk factors, and the severity of vascular disease can help develop more effective and longer-lasting treatments through computational modeling and device optimization. This review aims to summarize recent research on the main biomechanical and structural properties of human superficial femoral and popliteal arteries that comprise the FPA and describe their anatomy, composition, and mechanical behavior under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Poulson et al. [2] and Kamenskiy et al. [4]

Fig. 2
Fig. 3

Modified from Jadidi et al. [11]

Fig. 4

Adapted from Desyatova et al. [25]

Similar content being viewed by others

References

  1. Desyatova, A., W. Poulson, P. Deegan, et al. Limb flexion-induced twist and associated intramural stresses in the human femoropopliteal artery. J. R. Soc. Interface. 14(128):20170025, 2017. https://doi.org/10.1098/rsif.2017.0025.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Poulson, W., A. Kamenskiy, A. Seas, P. Deegan, C. Lomneth, and J. MacTaggart. Limb flexion-induced axial compression and bending in human femoropopliteal artery segments. J. Vasc. Surg. 67(2):607–613, 2018. https://doi.org/10.1016/j.jvs.2017.01.071.

    Article  PubMed  Google Scholar 

  3. Watt, J. K. J. Origin of femoro-popliteal occlusions. Br. Med. J. 2(December):1455–1459, 1965. https://doi.org/10.1136/bmj.2.5476.1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kamenskiy, A. V., I. I. Pipinos, Y. A. Dzenis, et al. Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Acta biomater. 11(1):304–313, 2015. https://doi.org/10.1016/j.actbio.2014.09.050.

    Article  PubMed  Google Scholar 

  5. Mahoney, E. M., K. Wang, D. J. Cohen, et al. One-year costs in patients with a history of or at risk for atherothrombosis in the United States. Circ. Cardiovasc. Qual. Outcomes. 1(1):38–45, 2008. https://doi.org/10.1161/CIRCOUTCOMES.108.775247.

    Article  PubMed  Google Scholar 

  6. Farber, A., M. T. Menard, M. S. Conte, et al. Surgery or endovascular therapy for chronic limb-threatening ischemia. N. Engl. J. Med. 387(25):2305–2316, 2022. https://doi.org/10.1056/nejmoa2207899.

    Article  PubMed  Google Scholar 

  7. Conte, M. S., D. F. Bandyk, A. W. Clowes, et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J. Vasc. Surg. 43(4):742–751, 2006. https://doi.org/10.1016/j.jvs.2005.12.058.

    Article  PubMed  Google Scholar 

  8. Lundgren, F. External support of a polytetrafluoroethylene graft improves patency for bypass to below-knee arteries. Ann. Vasc. Surg. 27(8):1124–1133, 2013. https://doi.org/10.1016/j.avsg.2013.02.009.

    Article  PubMed  Google Scholar 

  9. Stavroulakis, K., G. Torsello, A. Manal, et al. Results of primary stent therapy for femoropopliteal peripheral arterial disease at 7 years. J. Vasc. Surg. 64(6):1696–1702, 2016. https://doi.org/10.1016/j.jvs.2016.05.073.

    Article  PubMed  Google Scholar 

  10. Pelton, A. R., S. M. Pelton, J. Ulmer, et al. The use of next generation Nitinol for medical implants. In: European Symposium on Vascular Biomaterials, Strasbourg, France, pp. 35–44.

  11. Jadidi, M., S. A. Razian, E. Anttila, et al. Comparison of morphometric, structural, mechanical, and physiologic characteristics of human superficial femoral and popliteal arteries. Acta biomater. 121:431–443, 2021. https://doi.org/10.1016/j.actbio.2020.11.025.

    Article  CAS  PubMed  Google Scholar 

  12. Jadidi, M., S. A. Razian, M. Habibnezhad, E. Anttila, and A. Kamenskiy. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: comparison of the descending thoracic aorta to the superficial femoral artery. Acta biomater. 119:268–283, 2021. https://doi.org/10.1016/j.actbio.2020.10.035.

    Article  CAS  PubMed  Google Scholar 

  13. Bortolotto, L. A., O. Hanon, G. Franconi, P. Boutouyrie, S. Legrain, and X. Girerd. The aging process modifies the distensibility of elastic but not muscular arteries. Hypertension. 34(4 II):889–892, 1999. https://doi.org/10.1161/01.HYP.34.4.889.

    Article  CAS  PubMed  Google Scholar 

  14. Kawasaki, T., S. Sasayama, S. I. Yagi, T. Asakawa, and T. Hirai. Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovasc. Res. 21(9):678–687, 1987. https://doi.org/10.1093/cvr/21.9.678.

    Article  CAS  PubMed  Google Scholar 

  15. Benetos, A., S. Laurent, A. P. Hoeks, P. H. Boutouyrie, and M. E. Safar. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler. Thromb. Vasc. Biol. 13(1):90–97, 1993. https://doi.org/10.1161/01.ATV.13.1.90.

    Article  CAS  Google Scholar 

  16. Sass, C., B. Herbeth, O. Chapet, G. Siest, S. Visvikis, and F. Zannad. Intima–media thickness and diameter of carotid and femoral arteries in children, adolescents and adults from the Stanislas cohort: effect of age, sex, anthropometry and blood pressure. J. Hypertens. 16(11):1593–1602, 1998. https://doi.org/10.1097/00004872-199816110-00005.

    Article  CAS  PubMed  Google Scholar 

  17. Wood, N. B., S. Z. Zhao, A. Zambanini, et al. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. (1985). 101(5):1412–1418, 2006. https://doi.org/10.1152/japplphysiol.00051.2006.

    Article  CAS  PubMed  Google Scholar 

  18. Malik, J., L. Novakova, A. Valerianova, et al. Wall shear stress alteration: a local risk factor of atherosclerosis. Curr. Atheroscler. Rep. 24(3):143–151, 2022. https://doi.org/10.1007/s11883-022-00993-0.

    Article  Google Scholar 

  19. Shapiro, S. D., S. K. Endicott, M. A. Province, J. A. Pierce, and E. J. Campbell. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of d-aspartate and nuclear weapons-related radiocarbon. J. Clin. Investig. 87(5):1828–1834, 1991. https://doi.org/10.1172/JCI115204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cardamone, L., A. Valentin, J. F. Eberth, and J. D. Humphrey. Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 2009. https://doi.org/10.1007/s10237-008-0146-x. (Published online January)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lannoy, M., S. Slove, and M. P. Jacob. The function of elastic fibers in the arteries: beyond elasticity. Pathol. Biol. 62(2):79–83, 2014. https://doi.org/10.1016/j.patbio.2014.02.011.

    Article  CAS  PubMed  Google Scholar 

  22. Cocciolone, A. J., J. Z. Hawes, M. C. Staiculescu, E. O. Johnson, M. Murshed, and J. E. Wagenseil. Elastin, arterial mechanics, and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 315(2):H189–H205, 2018. https://doi.org/10.1152/ajpheart.00087.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamenskiy, A. V., I. I. Pipinos, Y. A. Dzenis, et al. Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries. Acta biomater. 10(3):1301–1313, 2014. https://doi.org/10.1016/j.actbio.2013.12.027.

    Article  PubMed  Google Scholar 

  24. Kamenskiy, A., A. Seas, G. Bowen, et al. In situ longitudinal pre-stretch in the human femoropopliteal artery. Acta Biomater. 32:231–237, 2016. https://doi.org/10.1016/j.actbio.2016.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Desyatova, A., J. MacTaggart, R. Romarowski, W. Poulson, M. Conti, and A. Kamenskiy. Effect of aging on mechanical stresses, deformations, and hemodynamics in human femoropopliteal artery due to limb flexion. Biomech. Model. Mechanobiol. 17(1):181–189, 2018. https://doi.org/10.1007/s10237-017-0953-z.

    Article  PubMed  Google Scholar 

  26. Kamenskiy, A., A. Seas, P. Deegan, et al. Constitutive description of human femoropopliteal artery aging. Biomech. Model. Mechanobiol. 16(2):681–692, 2017. https://doi.org/10.1007/s10237-016-0845-7.

    Article  PubMed  Google Scholar 

  27. Jadidi, M., S. Sherifova, G. Sommer, A. Kamenskiy, and G. A. Holzapfel. Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages. Acta biomater. 121:461–474, 2021. https://doi.org/10.1016/j.actbio.2020.11.046.

    Article  CAS  PubMed  Google Scholar 

  28. Mattson, J. M., R. Turcotte, and Y. Zhang. Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics. Biomech. Model. Mechanobiol. 16(1):213–225, 2017. https://doi.org/10.1007/s10237-016-0811-4.

    Article  PubMed  Google Scholar 

  29. Humphrey, J. D. Possible mechanical roles of glycosaminoglycans in thoracic aortic dissection and associations with dysregulated transforming growth factor-β. J. Vasc. Res. 50(1):1–10, 2012. https://doi.org/10.1159/000342436.

    Article  CAS  PubMed  Google Scholar 

  30. Casale, J., and J. S. Crane. Biochemistry, glycosaminoglycans. In: StatPearls. StatPearls Publishing, 2023. http://www.ncbi.nlm.nih.gov/books/NBK544295/. Accessed September 18, 2023.

  31. Tsai, S., and G. L. Vega. Coronary and peripheral artery plaques: do differences in plaque characteristics translate to differences in lipid management? J. Investig. Med. 68(6):1141–1151, 2020. https://doi.org/10.1136/jim-2019-001252.

    Article  PubMed  Google Scholar 

  32. Herisson, F., M. F. Heymann, M. Chétiveaux, et al. Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis. 216(2):348–354, 2011. https://doi.org/10.1016/j.atherosclerosis.2011.02.004.

    Article  CAS  PubMed  Google Scholar 

  33. St. Hilaire, C. Medial arterial calcification: a significant and independent contributor of peripheral artery disease. Arterioscler. Thromb. Vasc. Biol. 42(3):253–260, 2022. https://doi.org/10.1161/ATVBAHA.121.316252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, C. L. L., I. H. H. Wu, Y. W. W. Wu, et al. Association of lower extremity arterial calcification with amputation and mortality in patients with symptomatic peripheral artery disease. PLoS ONE.9(2):e90201, 2014. https://doi.org/10.1371/journal.pone.0090201.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Edmonds, M. E. Medial arterial calcification and diabetes mellitus. Z. Kardiol. 89(SUPPL. 2):101–104, 2000. https://doi.org/10.1007/s003920070107.

    Article  PubMed  Google Scholar 

  36. Amann, K. Media calcification and intima calcification are distinct entities in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 3(6):1599–1605, 2008. https://doi.org/10.2215/CJN.02120508.

    Article  MathSciNet  PubMed  Google Scholar 

  37. Narula, N., A. J. Dannenberg, J. W. Olin, et al. Pathology of peripheral artery disease in patients with critical limb ischemia. J. Am. Coll. Cardiol. 72(18):2152–2163, 2018. https://doi.org/10.1016/j.jacc.2018.08.002.

    Article  CAS  PubMed  Google Scholar 

  38. Kamenskiy, A., W. Poulson, S. Sim, A. Reilly, J. Luo, and J. Mactaggart. Prevalence of calcification in human femoropopliteal arteries and its association with demographics, risk factors, and arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 38(4):ATVBAHA117.310490, 2018. https://doi.org/10.1161/ATVBAHA.117.310490.

    Article  CAS  Google Scholar 

  39. Desyatova, A., J. MacTaggart, and A. Kamenskiy. Constitutive modeling of human femoropopliteal artery biaxial stiffening due to aging and diabetes. Acta biomater. 64:50–58, 2017. https://doi.org/10.1016/j.actbio.2017.09.042.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cameron, J. D., C. J. Bulpitt, E. S. Pinto, and C. Rajkumar. The aging of elastic and muscular arteries: a comparison of diabetic and nondiabetic subjects. Diabetes Care. 26(7):2133–2138, 2003. https://doi.org/10.2337/diacare.26.7.2133.

    Article  PubMed  Google Scholar 

  41. Wang, Y., S. Zeinali-Davarani, E. C. Davis, and Y. Zhang. Effect of glucose on the biomechanical function of arterial elastin. J. Mech. Behav. Biomed. Mater. 49(617):244–254, 2015. https://doi.org/10.1016/j.jmbbm.2015.04.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kamenskiy, A., W, Poulson, S. Sim, A. Reilly, J. Luo, and J. MacTaggart. Prevalence of calcification in human femoropopliteal arteries and its association with demographics, risk factors, and arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 38(4):48–57, 2018. doi: https://doi.org/10.1161/ATVBAHA.117.310490.

  43. Smilde, T. J., F. W. P. J. Van Den Berkmortel, G. H. J. Boers, et al. Carotid and femoral artery wall thickness and stiffness in patients at risk for cardiovascular disease, with special emphasis on hyperhomocysteinemia. Arterioscler. Thromb. Vasc. Biol. 18(12):1958–1963, 1998. https://doi.org/10.1161/01.ATV.18.12.1958.

    Article  CAS  PubMed  Google Scholar 

  44. Ruitenbeek, A. G., T. J. M. Van Der Cammen, A. H. Van Den Meiracker, and F. U. S. Mattace-Raso. Age and blood pressure levels modify the functional properties of central but not peripheral arteries. Angiology. 59(3):290–295, 2008. https://doi.org/10.1177/0003319707305692.

    Article  PubMed  Google Scholar 

  45. Harvey, A., A. C. Montezano, and R. M. Touyz. Vascular biology of ageing—implications in hypertension. J. Mol. Cell. Cardiol. 83:112–121, 2015. https://doi.org/10.1016/j.yjmcc.2015.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stefanadis, C., E. Tsiamis, C. Vlachopoulos, et al. Unfavorable effect of smoking on the elastic properties of the human aorta. Circulation. 95(1):31–38, 1997. https://doi.org/10.1161/01.CIR.95.1.31.

    Article  CAS  PubMed  Google Scholar 

  47. Criqui, M. H., and V. Aboyans. Epidemiology of peripheral artery disease. Circ. Res. 116(9):1509–1526, 2015. https://doi.org/10.1161/CIRCRESAHA.116.303849.

    Article  CAS  PubMed  Google Scholar 

  48. Rehill, N., C. R. Beck, K. R. Yeo, and W. W. Yeo. The effect of chronic tobacco smoking on arterial stiffness. Br. J. Clin. Pharmacol. 61(6):767–773, 2006. https://doi.org/10.1111/j.1365-2125.2006.02630.x.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee, M. J., J. T. Park, T. I. Chang, et al. Smoking cessation and coronary artery calcification in CKD. Clin. J. Am. Soc. Nephrol. 16(6):870, 2021. https://doi.org/10.2215/CJN.15751020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jadidi, M., W. Poulson, P. Aylward, et al. Calcification prevalence in different vascular zones and its association with demographics, risk factors, and morphometry. Am. J. Physiol. Heart Circ. Physiol. 320(6):H2313–H2323, 2021. https://doi.org/10.1152/ajpheart.00040.2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bossuyt, J., L. Engelen, I. Ferreira, et al. Reference values for local arterial stiffness. Part B: femoral artery. J. Hypertens. 33(10):1997–2009, 2015. https://doi.org/10.1097/HJH.0000000000000655.

    Article  CAS  PubMed  Google Scholar 

  52. Jadidi, M., A. Desyatova, J. MacTaggart, and A. Kamenskiy. Mechanical stresses associated with flattening of human femoropopliteal artery specimens during planar biaxial testing and their effects on the calculated physiologic stress-stretch state. Biomech. Model. Mechanobiol. 18(6):1591–1605, 2019. https://doi.org/10.1007/s10237-019-01162-0.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Van Bortel, L. M., T. De Backer, and P. Segers. Direct measurement of local arterial stiffness and pulse pressure. In: Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases, Vol 9781447151. London: Springer, 2015, pp. 23–35. https://doi.org/10.1007/978-1-4471-5198-2_3.

  54. Zhang, Y., D. Agnoletti, A. D. Protogerou, et al. Characteristics of pulse wave velocity in elastic and muscular arteries. J. Hypertens. 31(3):554–559, 2013. https://doi.org/10.1097/HJH.0b013e32835d4aec.

    Article  CAS  PubMed  Google Scholar 

  55. Kimoto, E., T. Shoji, K. Shinohara, et al. Preferential stiffening of central over peripheral arteries in Type 2 diabetes. Diabetes. 52(2):448–452, 2003. https://doi.org/10.2337/diabetes.52.2.448.

    Article  CAS  PubMed  Google Scholar 

  56. Meyer, M. L., H. Tanaka, P. Palta, et al. Correlates of segmental pulse wave velocity in older adults: the Atherosclerosis Risk in Communities (ARIC) study. Am. J. Hypertens. 29(1):114–122, 2016. https://doi.org/10.1093/ajh/hpv079.

    Article  PubMed  Google Scholar 

  57. Ito, N., M. Ohishi, T. Takagi, et al. Clinical usefulness and limitations of brachial-ankle pulse wave velocity in the evaluation of cardiovascular complications in hypertensive patients. Hypertens. Res. 29:989–995, 2006.

    Article  PubMed  Google Scholar 

  58. Zhang, W., M. Jadidi, S. A. Razian, G. A. Holzapfel, A. Kamenskiy, and D. A. Nordsletten. A viscoelastic constitutive model for human femoropopliteal arteries. Acta Biomater. 2023. https://doi.org/10.1016/j.actbio.2023.09.007. (Published online September)

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kobayashi, N., K. Hirano, M. Yamawaki, et al. Simple classification and clinical outcomes of angiographic dissection after balloon angioplasty for femoropopliteal disease. J. Vasc. Surg. 67(4):1151–1158, 2018. https://doi.org/10.1016/j.jvs.2017.08.092.

    Article  PubMed  Google Scholar 

  60. Anttila, E., D. Balzani, A. Desyatova, P. Deegan, J. MacTaggart, and A. Kamenskiy. Mechanical damage characterization in human femoropopliteal arteries of different ages. Acta Biomater. 90:225–240, 2019. https://doi.org/10.1016/j.actbio.2019.03.053.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Holzapfel, G. A., J. J. Mulvihill, E. M. Cunnane, and M. T. Walsh. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J. Biomech. 47(4):859–869, 2014. https://doi.org/10.1016/j.jbiomech.2014.01.011.

    Article  PubMed  Google Scholar 

  62. Cahalane, R. M., H. E. Barrett, J. M. O’Brien, E. G. Kavanagh, M. A. Moloney, and M. T. Walsh. Relating the mechanical properties of atherosclerotic calcification to radiographic density: a nanoindentation approach. Acta Biomater. 80:228–236, 2018. https://doi.org/10.1016/j.actbio.2018.09.010.

    Article  PubMed  Google Scholar 

  63. Chai, C. K., L. Speelman, C. W. J. Oomens, and F. P. J. Baaijens. Compressive mechanical properties of atherosclerotic plaques—indentation test to characterise the local anisotropic behaviour. J. Biomech. 47(4):784–792, 2014. https://doi.org/10.1016/j.jbiomech.2014.01.018.

    Article  PubMed  Google Scholar 

  64. Walsh, M. T., E. M. Cunnane, J. J. Mulvihill, A. C. Akyildiz, F. J. H. Gijsen, and G. A. Holzapfel. Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques. J. Biomech. 47(4):793–804, 2014. https://doi.org/10.1016/j.jbiomech.2014.01.017.

    Article  CAS  PubMed  Google Scholar 

  65. Cunnane, E. M., J. J. E. Mulvihill, H. E. Barrett, et al. Mechanical, biological and structural characterization of human atherosclerotic femoral plaque tissue. Acta Biomater. 11:295–303, 2015. https://doi.org/10.1016/J.ACTBIO.2014.09.024.

    Article  CAS  PubMed  Google Scholar 

  66. Cunnane, E. M., H. E. Barrett, E. G. Kavanagh, R. Mongrain, and M. T. Walsh. The influence of composition and location on the toughness of human atherosclerotic femoral plaque tissue. Acta Biomater. 31:264–275, 2016. https://doi.org/10.1016/j.actbio.2015.11.056.

    Article  CAS  PubMed  Google Scholar 

  67. Noble, C., K. D. Carlson, E. Neumann, et al. Patient specific characterization of artery and plaque material properties in peripheral artery disease. J. Mech. Behav. Biomed. Mater.101:103453, 2020. https://doi.org/10.1016/j.jmbbm.2019.103453.

    Article  CAS  PubMed  Google Scholar 

  68. Cunnane, E. M., J. J. E. Mulvihill, H. E. Barrett, M. M. Hennessy, E. G. Kavanagh, and M. T. Walsh. Mechanical properties and composition of carotid and femoral atherosclerotic plaques: a comparative study. J. Biomech. 49(15):3697–3704, 2016. https://doi.org/10.1016/j.jbiomech.2016.09.036.

    Article  PubMed  Google Scholar 

  69. Ansari, F., L. K. Pack, S. S. Brooks, and T. M. Morrison. Design considerations for studies of the biomechanical environment of the femoropopliteal arteries. J. Vasc. Surg. 58(3):804–813, 2013. https://doi.org/10.1016/j.jvs.2013.03.052.

    Article  PubMed  Google Scholar 

  70. Smouse, H. B., A. Nikanorov, and D. Laflash. Biomechanical Forces in the Femoropopliteal Arterial Segment.

  71. Jonker, F. H. W., F. J. V. Schlösser, F. L. Moll, and B. E. Muhs. Dynamic Forces in the SFA and Popliteal Artery During Knee Flexion. 2009 (Published online).

  72. Scheinert, D., S. Scheinert, J. Sax, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 45(2):312–315, 2005. https://doi.org/10.1016/j.jacc.2004.11.026.

    Article  PubMed  Google Scholar 

  73. Kröger, K., F. Santosa, and M. Goyen. Biomechanical incompatibility of popliteal stent placement. J. Endovasc. Ther. 11(6):686–694, 2004. https://doi.org/10.1583/04-127.1.

    Article  PubMed  Google Scholar 

  74. Arena, F. J. Arterial kink and damage in normal segments of the superficial femoral and popliteal arteries abutting Nitinol stents—a common cause of late occlusion and restenosis? A single-center experience. J. Invasive Cardiol. 17(9):482–486, 2005.

    PubMed  Google Scholar 

  75. Keiser, C., K. Maleckis, P. Struczewska, M. Jadidi, J. MacTaggart, and A. Kamenskiy. A method of assessing peripheral stent abrasiveness under cyclic deformations experienced during limb movement. Acta biomater. 2022. https://doi.org/10.1016/j.actbio.2022.09.044.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Klein, A. J., S. James Chen, J. C. Messenger, et al. Quantitative assessment of the conformational change in the femoropopliteal artery with leg movement. Cathet. Cardiovasc. Interv. 74(5):787–798, 2009. https://doi.org/10.1002/ccd.22124.

    Article  Google Scholar 

  77. Cheng, C. P., N. M. Wilson, R. L. Hallett, R. J. Herfkens, and C. A. Taylor. In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J. Vasc. Interv. Radiol. 17(6):979–987, 2006. https://doi.org/10.1097/01.RVI.0000220367.62137.E8.

    Article  PubMed  Google Scholar 

  78. Gökgöl, C., S. Schumann, N. Diehm, G. Zheng, and P. Büchler. In vivo quantification of the deformations of the femoropopliteal segment: percutaneous transluminal angioplasty vs Nitinol stent placement. J. Endovasc. Ther. 24(1):27–34, 2017. https://doi.org/10.1177/1526602816677530.

    Article  PubMed  Google Scholar 

  79. Early, M., C. Lally, P. J. Prendergast, and D. J. Kelly. Stresses in peripheral arteries following stent placement: a finite element analysis. Comput. Methods Biomech. Biomed. Eng. 12(1):25–33, 2009. https://doi.org/10.1080/10255840802136135.

    Article  Google Scholar 

  80. Maleckis, K., E. Anttila, P. Aylward, et al. Nitinol stents in the femoropopliteal artery: a mechanical perspective on material, design, and performance. Ann. Biomed. Eng. 46(5):684–704, 2018. https://doi.org/10.1007/s10439-018-1990-1.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Early, M., and D. J. Kelly. The role of vessel geometry and material properties on the mechanics of stenting in the coronary and peripheral arteries. Proc. Inst. Mech. Eng. H. 224(3):465–476, 2010. https://doi.org/10.1243/09544119JEIM695.

    Article  CAS  PubMed  Google Scholar 

  82. Diehm, N., S. Sin, H. Hoppe, I. Baumgartner, and P. Büchler. Computational biomechanics to simulate the femoropopliteal intersection during knee flexion: a preliminary study. J. Endovasc. Ther. 18(3):388–396, 2011. https://doi.org/10.1583/10-3337.1.

    Article  PubMed  Google Scholar 

  83. Ní Ghriallais, R., and M. Bruzzi. Effects of knee flexion on the femoropopliteal artery: a computational study. Med. Eng. Phys. 35(11):1620–1628, 2013. https://doi.org/10.1016/j.medengphy.2013.05.015.

    Article  PubMed  Google Scholar 

  84. Choi, G., C. P. Cheng, N. M. Wilson, and C. A. Taylor. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann. Biomed. Eng. 37(1):14–33, 2009. https://doi.org/10.1007/s10439-008-9590-0.

    Article  PubMed  Google Scholar 

  85. Desyatova, A., J. MacTaggart, W. Poulson, et al. The choice of a constitutive formulation for modeling limb flexion-induced deformations and stresses in the human femoropopliteal arteries of different ages. Biomech. Model. Mechanobiol. 16(3):775–785, 2017. https://doi.org/10.1007/s10237-016-0852-8.

    Article  PubMed  Google Scholar 

  86. MacTaggart, J., W. Poulson, A. Seas, et al. Stent design affects femoropopliteal artery deformation. Ann. Surg. 270(1):180–187, 2019. https://doi.org/10.1097/SLA.0000000000002747.

    Article  PubMed  Google Scholar 

  87. Ní Ghriallais, R., and M. Bruzzi. A Computational analysis of the deformation of the femoropopliteal artery with stenting. J. Biomech. Eng. 136(7):071003, 2014. https://doi.org/10.1115/1.4027329.

    Article  Google Scholar 

  88. Schumann, S., C. Gökgöl, N. Diehm, P. Büchler, and G. Zheng. Effect of stent implantation on the deformations of the superficial femoral artery and popliteal artery: in vivo three-dimensional deformational analysis from two-dimensional radiographs. J. Vasc. Interv. Radiol. 28(1):142–146, 2017. https://doi.org/10.1016/j.jvir.2016.04.023.

    Article  PubMed  Google Scholar 

  89. Nikanorov, A., M. Schillinger, H. Zhao, E. Minar, and L. B. Schwartz. Assessment of self-expanding Nitinol stent deformation after chronic implantation into the femoropopliteal arteries. EuroIntervention. 9(6):730–737, 2013. https://doi.org/10.4244/EIJV9I6A117.

    Article  PubMed  Google Scholar 

  90. Malek, A. M. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 282(21):2035, 1999. https://doi.org/10.1001/jama.282.21.2035.

    Article  CAS  PubMed  Google Scholar 

  91. Cecchi, E., C. Giglioli, S. Valente, et al. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis. 214(2):249–256, 2011. https://doi.org/10.1016/j.atherosclerosis.2010.09.008.

    Article  CAS  PubMed  Google Scholar 

  92. Casa, L. D. C., D. H. Deaton, and D. N. Ku. Role of high shear rate in thrombosis. J. Vasc. Surg. 61(4):1068–1080, 2015. https://doi.org/10.1016/j.jvs.2014.12.050.

    Article  PubMed  Google Scholar 

  93. Davies, P. F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Rev. Cardiol. 6(1):16–26, 2009. https://doi.org/10.1038/ncpcardio1397.

    Article  CAS  Google Scholar 

  94. Peiffer, V., S. J. Sherwin, and P. D. Weinberg. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc. Res. 99(2):242–250, 2013. https://doi.org/10.1093/cvr/cvt044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Caballero, A. D., and S. Laín. A review on computational fluid dynamics modelling in human thoracic aorta. Cardiovasc. Eng. Technol. 4(2):103–130, 2013. https://doi.org/10.1007/s13239-013-0146-6.

    Article  Google Scholar 

  96. Zhang, J., L. Zhong, B. Su, et al. Perspective on CFD studies of coronary artery disease lesions and hemodynamics: a review. Numer. Methods Biomed. Eng. 30(6):659–680, 2014. https://doi.org/10.1002/cnm.2625.

    Article  MathSciNet  Google Scholar 

  97. Lopes, D., H. Puga, J. Teixeira, and R. Lima. Blood flow simulations in patient-specific geometries of the carotid artery: a systematic review. J. Biomech.111:110019, 2020. https://doi.org/10.1016/j.jbiomech.2020.110019.

    Article  CAS  PubMed  Google Scholar 

  98. Bordones, A. D., M. Leroux, V. O. Kheyfets, Y. A. Wu, C. Y. Chen, and E. A. Finol. Computational fluid dynamics modeling of the human pulmonary arteries with experimental validation. Ann. Biomed. Eng. 46(9):1309–1324, 2018. https://doi.org/10.1007/s10439-018-2047-1.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kheyfets, V. O., L. Rios, T. Smith, et al. Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Comput. Methods Programs Biomed. 120(2):88–101, 2015. https://doi.org/10.1016/j.cmpb.2015.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tang, B. T., S. S. Pickard, F. P. Chan, P. S. Tsao, C. A. Taylor, and J. A. Feinstein. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: an image-based, computational fluid dynamics study. Pulm. Circ. 2(4):470–476, 2012. https://doi.org/10.4103/2045-8932.105035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Friedman, M., O. Deters, F. Mark, C. Brentbargeron, and G. Hutchins. Arterial geometry affects hemodynamics *1A potential risk factor for atherosclerosis. Atherosclerosis. 46(2):225–231, 1983. https://doi.org/10.1016/0021-9150(83)90113-2.

    Article  CAS  PubMed  Google Scholar 

  102. Kuban, B. D., and M. H. Friedman. The effect of pulsatile frequency on wall shear in a compliant cast of a human aortic bifurcation. J. Biomech. Eng. 117(2):219–223, 1995. https://doi.org/10.1115/1.2796004.

    Article  CAS  PubMed  Google Scholar 

  103. Friedman, M. H., P. B. Baker, Z. Ding, and B. D. Kuban. Relationship between the geometry and quantitative morphology of the left anterior descending coronary artery. Atherosclerosis. 125(2):183–192, 1996. https://doi.org/10.1016/0021-9150(96)05869-8.

    Article  CAS  PubMed  Google Scholar 

  104. Lee, K. E., J. S. Lee, and J. Y. Yoo. A numerical study on steady flow in helically sinuous vascular prostheses. Med. Eng. Phys. 33(1):38–46, 2011. https://doi.org/10.1016/j.medengphy.2010.09.005.

    Article  PubMed  Google Scholar 

  105. Ong, C. W., I. Wee, N. Syn, et al. Computational fluid dynamics modeling of hemodynamic parameters in the human diseased aorta: a systematic review. Ann. Vasc. Surg. 63:336–381, 2020. https://doi.org/10.1016/j.avsg.2019.04.032.

    Article  PubMed  Google Scholar 

  106. Sun, Z., and L. Xu. Computational fluid dynamics in coronary artery disease. Comput. Med. Imaging Graph. 38(8):651–663, 2014. https://doi.org/10.1016/j.compmedimag.2014.09.002.

    Article  PubMed  Google Scholar 

  107. Li, X., X. Liu, X. Li, L. Xu, X. Chen, and F. Liang. Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis. Biomech. Model. Mechanobiol. 18(4):883–896, 2019. https://doi.org/10.1007/s10237-019-01118-4.

    Article  PubMed  Google Scholar 

  108. Colombo, M., G. Luraghi, L. Cestariolo, et al. Impact of lower limb movement on the hemodynamics of femoropopliteal arteries: a computational study. Med. Eng. Phys. 81:105–117, 2020. https://doi.org/10.1016/j.medengphy.2020.05.004.

    Article  PubMed  Google Scholar 

  109. Conti, M., A. Ferrarini, A. Finotello, et al. Patient-specific computational fluid dynamics of femoro-popliteal stent-graft thrombosis. Med. Eng. Phys. 86:57–64, 2020. https://doi.org/10.1016/j.medengphy.2020.10.011.

    Article  PubMed  Google Scholar 

  110. Gökgöl, C., N. Diehm, L. Räber, and P. Büchler. Prediction of restenosis based on hemodynamical markers in revascularized femoro-popliteal arteries during leg flexion. Biomech. Model. Mechanobiol. 18(6):1883–1893, 2019. https://doi.org/10.1007/s10237-019-01183-9.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schlager, O., A. Giurgea, C. Margeta, et al. Wall shear stress in the superficial femoral artery of healthy adults and its response to postural changes and exercise. Eur. J. Vasc. Endovasc. Surg. 41(6):821–827, 2011. https://doi.org/10.1016/j.ejvs.2011.01.006.

    Article  CAS  PubMed  Google Scholar 

  112. Schlager, O., S. Zehetmayer, D. Seidinger, B. Van Der Loo, and R. Koppensteiner. Wall shear stress in the stented superficial femoral artery in peripheral arterial disease. Atherosclerosis. 233(1):76–82, 2014. https://doi.org/10.1016/j.atherosclerosis.2013.12.035.

    Article  CAS  PubMed  Google Scholar 

  113. Colombo, M., M. Bologna, M. Garbey, et al. Computing patient-specific hemodynamics in stented femoral artery models obtained from computed tomography using a validated 3D reconstruction method. Med. Eng. Phys. 75:23–35, 2020. https://doi.org/10.1016/j.medengphy.2019.10.005.

    Article  PubMed  Google Scholar 

  114. Colombo, M., Y. He, A. Corti, et al. In-stent restenosis progression in human superficial femoral arteries: dynamics of lumen remodeling and impact of local hemodynamics. Ann. Biomed. Eng. 49(9):2349–2364, 2021. https://doi.org/10.1007/s10439-021-02776-1.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ferrarini, A., A. Finotello, G. Salsano, et al. Impact of leg bending in the patient-specific computational fluid dynamics of popliteal stenting. Acta Mech. Sin. 37(2):279–291, 2021. https://doi.org/10.1007/s10409-021-01066-2.

    Article  ADS  Google Scholar 

  116. Kim, Y. H., J. E. Kim, Y. Ito, A. M. Shih, B. Brott, and A. Anayiotos. Hemodynamic analysis of a compliant femoral artery bifurcation model using a fluid structure interaction framework. Ann. Biomed. Eng. 36(11):1753–1763, 2008. https://doi.org/10.1007/s10439-008-9558-0.

    Article  PubMed  Google Scholar 

  117. Javadzadegan, A., A. Lotfi, A. Simmons, and T. Barber. Haemodynamic analysis of femoral artery bifurcation models under different physiological flow waveforms. Comput. Methods Biomech. Biomed. Eng. 19(11):1143–1153, 2016. https://doi.org/10.1080/10255842.2015.1113406.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health Awards HL125736, HL147128, and P20GM152301. The authors also wish to acknowledge Live On Nebraska for their help and support, and thank donors and their families for making this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Kamenskiy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to this submission.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbad, R., Pipinos, M., Jadidi, M. et al. Structural and Mechanical Properties of Human Superficial Femoral and Popliteal Arteries. Ann Biomed Eng 52, 794–815 (2024). https://doi.org/10.1007/s10439-023-03435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03435-3

Keywords

Navigation