Skip to main content
Log in

Hemodynamic Analysis of a Compliant Femoral Artery Bifurcation Model using a Fluid Structure Interaction Framework

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The influence of wall motion on the hemodynamic characteristics of the human femoral bifurcation and its effects on the development of peripheral artery disease has not been previously investigated. This study aimed in investigating the hemodynamics of a compliant patient-specific femoral artery bifurcation model by a fluid structure interaction (FSI) scheme. The complex physiological geometry of the femoral artery bifurcation was reproduced from sequentially obtained transverse CT scan images. Velocity waveforms derived from phase contrast MR images were extracted and mapped to define boundary conditions. Equations governing blood flow and wall motion were solved using an FSI framework that utilizes commercial codes: FLUENT for computational fluid dynamics and ANSYS for computational structural dynamics. The results showed that wall compliance decreased flow velocities at the relatively high curvature geometries including common and superficial femoral artery (SFA), and it created strong recirculation in the profunda femoris artery close to the bifurcation. In the SFA region near the apex, time averaged wall shear stress (TAWSS) differences up to 25% between compliant and rigid models were observed. The compliant model also exhibited lower TAWSS and oscillatory shear at the superior section of the common femoral artery close to the bifurcation. The presence of wall motion, however, created minor differences in the general flow-field characteristics. We conclude that wall motion does not have significant influence on the global fluid dynamic characteristics of the femoral artery bifurcation. Longer arterial segments need to be simulated to see the effect of wall motion on tortuousity which was previously cited as an important factor in the development of atherosclerosis at the femoral artery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Anayiotos A., S. Jones, D. P. Giddens, S. Glagov, C. K. Zarins. Shear stress at a compliant model of the human carotid bifurcation. J. Biomech. Eng. 116(1): 98–106, 1994. doi:10.1115/1.2895710

    Article  PubMed  CAS  Google Scholar 

  2. Anayiotos A., P. D. Pedroso, E. C. Elefhteriou, R. Venugopalan, W. Holman. Effect of a flow-streamlining implant at the distal anastomosis of a coronary artery bypass graft. Ann. Biomed. 30(7): 917–926, 2002. doi:10.1114/1.1500407

    Article  Google Scholar 

  3. Back L. H., M. R. Back, E. Y. Kwack, D. W. Crawford. Flow measurements in a human femoral artery model with reverse lumen curvature. J. Biomech. Eng. 110(4): 300–309, 1988

    PubMed  CAS  Google Scholar 

  4. Bao X., C. Lu, J. A. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1. Arterioscler. Thromb. Vasc. Biol. 19(4): 996–1003, 1999

    PubMed  CAS  Google Scholar 

  5. Flow in large blood vessels, Fluid Dynamics in Biology, Contemporary Math. Series, edited by A. Y. Cheer and C. P. Van Dam, Amer. Math. Soc. Providence, 1992, pp. 479–518

  6. Botnar R., G. Rappitsch, M. B. Scheidegger, D. Liepsch, K. Perktold, P. Boesiger. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J. Biomech. 33(2): 137–144, 2000. doi:10.1016/S0021-9290(99)00164-5

    Article  PubMed  CAS  Google Scholar 

  7. Cho Y. I., L. H. Back, D. W. Crawford. Pressure difference-flow rate variation in a femoral artery branch casting of man for steady flow. J. Biomech. Eng. 105(3): 258–262, 1983

    PubMed  CAS  Google Scholar 

  8. Cho Y. I., L. H. Back, D. W. Crawford. Experimental investigation of branch flow ratio, angle, and Reynolds number effects on the pressure and flow fields in arterial branch models. J. Biomech. Eng. 107(3): 257–267, 1985

    Article  PubMed  CAS  Google Scholar 

  9. Duchon J. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Constructive Theory of Functions of Several Variables. Lect. Notes Math. 571: 85–100, 1977

    Article  Google Scholar 

  10. Duncan D. D., C. B. Bargercon, S. E. Borchart, O. J. Deters, S. A. Gearhart, F. F. Mark, M. H. Friedman. The effect of compliance on wall shear in casts of a human aortic bifurcation. J. Biomech. Eng. 112(2): 183–188, 1990. doi:10.1115/1.2891170

    Article  PubMed  CAS  Google Scholar 

  11. Farhat C., M. Lesoinne. Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput. Meth. 182: 499–515, 2000

    Article  Google Scholar 

  12. Farhat C., M. Lesoinne, P. LeTallec. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Meth. 157: 95–114, 1998

    Article  Google Scholar 

  13. Friedman M. H., G. M. Hutchins, C. B. Bargeron, O. J. Deters, F. F. Mark. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39(3): 425–436, 1981. doi:10.1016/0021-9150(81)90027-7

    Article  PubMed  CAS  Google Scholar 

  14. Futterman L. G., L. Lemberg. Peripheral arterial disease is only the tip of the atherosclerotic “Iceberg”. Am. J. Crit. Care. 11(4): 390–394, 2002

    PubMed  Google Scholar 

  15. Garasic J. M., M. A. Creager. Percutaneous interventions for lower-extremity peripheral atherosclerotic disease. Rev. Cardiovasc. Med. 2(3): 120–125, 2001

    PubMed  CAS  Google Scholar 

  16. Gijsen F. J. H., D. E. M. Palmen, M. H. E. van der Beek, F. N. van de Vosse, M. E. H. van Dongen, J. D. Janssen. Analysis of the axial flow field in stenosed carotid artery bifurcation models-LDA experiments. J. Biomech. 29(11): 1483–1489, 1996. doi:10.1016/0021-9290(96)84544-1

    Article  PubMed  CAS  Google Scholar 

  17. Giordana S., S. J. Sherwin, J. Peiro, D. J. Doorly, J. S. Crane, K. E. Lee, N. J. W. Cheshire, C. G. Caro. Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts. J. Biomech. Eng. 127(7): 1087–098, 2005. doi:10.1115/1.2073507

    Article  PubMed  CAS  Google Scholar 

  18. Higgins, C. B., and A. Roos. MRI and CT of the Cardiovascular System, 2nd edn. Lippincott Williams & Wilkins, 2005

  19. Hirsch A. T., M. H. Criqui, D. T. Jacobson, J. G. Regensteiner, M. A. Creager, J. W. Olin, S. H. Krook, D. B. Hunninghake, A. J. Comerota, M. E. Walsh, M. M. McDermott, W. R. Hiatt. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286(11): 1317–1324, 2001. doi:10.1001/jama.286.11.1317

    Article  PubMed  CAS  Google Scholar 

  20. Ito Y., A. M. Shih, B. K. Soni, K. Nakahashi. Multiple marching direction approach to generate high quality hybrid meshes. AIAA J. 45(1): 162–167, 2007. doi:10.2514/1.23260

    Article  Google Scholar 

  21. Ito Y., P. C. Shum, A. M. Shih, B. K. Soni, K. Nakahashi. Robust generation of high-quality unstructured meshes on realistic biomedical geometry. Int. J. Numer. Meth. Eng. 65(6): 943–973, 2006. doi:10.1002/nme.1482

    Article  Google Scholar 

  22. Jones C. J. H., M. J. Lever, Y. Ogasawara, K. H. Parker, K. Tsujioka, O. Hiramatsu, K. Mito, C. G. Caro, F. Kajiya. Blood velocity distributions within intact canine arterial bifurcations. Am. J. P. 262: H1592–H1599, 1992

    CAS  Google Scholar 

  23. Kim, Y. H. Development of efficient algorithms for fluid-structure interaction framework and its applications. Ph.D. Dissertation, University of Alabama at Birmingham, 2006

  24. Kim Y. H., J. E. Kim. New hybrid interpolation method for motion transfer in fluid structure interactions. J. Aircraft 43(2): 567–569, 2006. doi:10.2514/1.15097

    Article  Google Scholar 

  25. Kornet L., A. P. Hoeks, J. Lambregts, R. S. Reneman. Mean wall shear stress in the femoral arterial bifurcation is low and independent of age at rest. J. Vasc. Res. 37(2): 112–122, 2000 doi:10.1159/000025722

    Article  PubMed  CAS  Google Scholar 

  26. Ku D. N., D. P. Giddens, C. K. Zarins, S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 5(3): 293–302, 1985

    PubMed  CAS  Google Scholar 

  27. Lei M., C. Kleinstreuer, J. P. Archie. Geometric design improvements for femoral graft-artery junctions mitigating restenosis. J. Biomech. 29(12): 1605–1614, 1996

    PubMed  CAS  Google Scholar 

  28. Li Z., C. Kleinstreuer. Fluid-structure interaction effects on sac-blood pressure and wall stress in a stented aneurysm. J. Biomech. Eng. 127(4): 662–671, 2005. doi:10.1115/1.1934040

    Article  PubMed  CAS  Google Scholar 

  29. Liepsch D., S. Moravec. Pulsatile flow of non-newtonian fluid in distensible models of human arteries. Biorheology 21(4): 571–586, 1984

    PubMed  CAS  Google Scholar 

  30. LoGerfo F. W., M. D. Nowak, W. C. Quist, H. M. Crawshaw, B. K. Bharadvaj. Flow studies in a model carotid bifurcation. Arteriosclerosis 1(4): 235–241, 1981

    PubMed  CAS  Google Scholar 

  31. Loth F., N. Arslan, P. F. Fischer, C. D. Bertram, S. E. Lee, T. J. Royston, R. H. Song, W. E. Shaalan, H. S. Bassiouny. Transitional flow at the venous anastomosis of an arteriovenous graft: Potential relationship with activation of the ERK1/2 mechanotransduction pathway. J. Biomech. Eng. 125(1): 49–61, 2003. doi:10.1115/1.1537737

    Article  PubMed  Google Scholar 

  32. Mark F. F., C. B. Bergeron, O. J. Deters, M. H. Friedman. Variations in geometry and shear rate distributions in casts of human aortic bifurcations. J. Biomech. 22(6–7): 577–582, 1989. doi:10.1016/0021-9290(89)90009-2

    Article  PubMed  CAS  Google Scholar 

  33. Maurits N. M., G. E. Loots, A. E. P. Veldman. The influence of vessel wall elasticity and peripheral resistance on the carotid artery flow wave form: a CFD model compared to in vivo ultrasound measurements. J. Biomech. 40(2): 427–436, 2007. doi:10.1016/j.jbiomech.2005.12.008

    Article  PubMed  CAS  Google Scholar 

  34. McDermott M. M., K. Liu, P. Greenland, J. M. Guralnik, M. H. Criqui, C. Chan, W. H. Pearce, J. R. Schneider, L. Ferrucci, L. Celic, L. M. Taylor, E. Vonesh, G. J. Martin, E. Clark. Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms. JAMA 292(4): 453–461, 2004. doi:10.1001/jama.292.4.453

    Article  PubMed  CAS  Google Scholar 

  35. Mooney M. A theory of large elastic deformation. J. Appl. Physiol. 11: 582–592, 1940. doi:10.1063/1.1712836

    Article  Google Scholar 

  36. Motomiya M., T. Karino. Flow patterns in the human carotid artery bifurcation. Stroke 15(1): 50–56, 1984

    PubMed  CAS  Google Scholar 

  37. Mozersky D. J., D. S. Sumner, D. E. Hokanson, D. E. Strandness Jr. Transeutaneous measurement of the elastic properties of the human femoral artery. Circulation 46(5): 948–955, 1972

    PubMed  CAS  Google Scholar 

  38. Ostchega Y., R. Paulose-Ram, C. F. Dillon, Q. Gu, J. P. Hughes. Prevalence of peripheral arterial disease and risk factors in persons aged 60 and older: data from the national health and nutrition examination survey 1999–2004. J. Am. Geriatr. Soc. 55(4): 583–589, 2007. doi:10.1111/j.1532-5415.2007.01123.x

    Article  PubMed  Google Scholar 

  39. Papaharilaou Y., J. A. Ekaterinaris, E. Manousaki, A. N. Katsamouris. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J. Biomech. 40(2): 367–377, 2007. doi:10.1016/j.jbiomech.2005.12.013

    Article  PubMed  Google Scholar 

  40. Perktold K., G. Rappitsch. Computer-simulation of local blood-flow and vessel mechanics in a compliant carotid-artery bifurcation model. J. Biomech. 28(7): 845–856, 1995. doi:10.1016/0021-9290(95)95273-8

    Article  PubMed  CAS  Google Scholar 

  41. Prendergast P. J., C. Lally, S. Daly, A. J. Reid, T. C. Lee, D. Quinn, F. Dolan. Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite element modeling. J. Biomech. Eng. 125(5): 692–699, 2003. doi:10.1115/1.1613674

    Article  PubMed  CAS  Google Scholar 

  42. Rhee K., S. M. Lee. Effects of radial wall motion and flow waveform on the wall shear rate distribution in the divergent Vascular Graft. Ann. Biomed. 26(6): 955–964, 1998. doi:10.1114/1.31

    Article  CAS  Google Scholar 

  43. Sanctis J. T. D. Percutaneous interventions for lower extremity peripheral vascular disease. Am. Fam. Physician 64(12): 1965–1972, 2001

    PubMed  Google Scholar 

  44. Smedby O. Do plaques grow upstream or downstream: an angiographic study in the femoral artery. Arterioscler. Thromb. Vasc. Biol. 17(5): 912–918, 1997

    PubMed  CAS  Google Scholar 

  45. Smedby O., L. Bergstrand. Tortuosity and atherosclerosis in the femoral artery: what is cause and what is effect? Ann. Biomed. 24(4): 474–480, 1996. doi:10.1007/BF02648109

    Article  CAS  Google Scholar 

  46. Smedby O., J. Johansson, J. Molgaard, A. G. Olsson, G. Walldius, U. Erikson. Predilection of atherosclerosis for the inner curvature in the femoral artery. A digitized angiography study. Arterioscler. Thromb. Vasc. Biol. 15(7): 912–917, 1995

    PubMed  CAS  Google Scholar 

  47. Smedby O., S. Nilsson, L. Bergstrand. Development of femoral atherosclerosis in relation to flow disturbance. J. Biomech. 29(4): 543–547, 1996. doi:10.1016/0021-9290(95)00070-4

    Article  PubMed  CAS  Google Scholar 

  48. Smilde T. J., F.W. van den Berkmortel, G. H. Boers, H. Wollersheim, T. de Boo, H. van Langen, A. F. Stalenhoef. Carotid and femoral artery wall thickness and stiffness in patients at risk for cardiovascular disease, with special emphasis on hyperhomocysteinemia. Arterioscler. Thromb. Vasc. Biol. 18(12): 1958–1963, 1998

    PubMed  CAS  Google Scholar 

  49. Steinman D. A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. 30(4): 483–497, 2002. doi:10.1114/1.1467679

    Article  Google Scholar 

  50. Tai N. R., A. Giudiceandrea, H. J. Salacinski, A. M. Seifalian, G. Hamilton. In vivo femoropopliteal arterial wall compliance in subjects with and without lower limb vascular disease. J. Vasc. Surg. 30(5): 936–945, 1999. doi:10.1016/S0741-5214(99)70020-0

    Article  PubMed  CAS  Google Scholar 

  51. Wensing P. J., L. Meiss, W. P. Mali, B. Hillen. Early atherosclerotic lesions spiraling through the femoral artery. Arterioscler. Thromb. Vasc. Biol. 18(10): 1554–1558, 1998

    PubMed  CAS  Google Scholar 

  52. Wood N. B., S. Z. Zhao, A. Zambanini, M. Jackson, W. Gedroyc, S. A. Thom, A. D. Hughes, X. Y. Xu. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J. Appl. Physiol. 101(5): 1412–1418, 2006. doi:10.1152/japplphysiol.00051.2006

    Article  PubMed  CAS  Google Scholar 

  53. Wu S. P., S. Ringgaard, S. Oyre, M. S. Hansen, S. Rasmus, E. M. Pedersen. Wall shear rates differ between the normal carotid, femoral, and brachial arteries: an in vivo MRI study. J. Magn. Reson. Imaging, 19(2): 188–193, 2004. doi:10.1002/jmri.10441

    Article  PubMed  Google Scholar 

  54. Younis H. F., M. R. Kaazempur-Mofrad, R. C. Chan, A. G. Isasi, D. P. Hinton, A. H. Chau, L. A. Kim, R. D. Kamm. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech. Model. Mechanobiol. 3: 17–32, 2004. doi:10.1007/s10237-004-0046-7

    Article  PubMed  CAS  Google Scholar 

  55. Zeng D., R. Ethier. A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains. Finite. Elem. Anal. Des. 41(11–12): 1118–1139, 2005

    Article  Google Scholar 

  56. Zhang W., C. Herrera, S. N. Atluri, G. S. Kassab. Effect of surrounding tissue on vessel fluid and solid mechanics. J. Biomech. Eng. 126(6): 760–769, 2004. doi:10.1115/1.1824128

    Article  PubMed  Google Scholar 

  57. Zhao S. Z., P. Papathanasopoulou, Q. Long, I. Marshall, X. Y. Xu. Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom. Ann. Biomed. 31(2): 962–971, 2003. doi:10.1114/1.1590664

    Article  CAS  Google Scholar 

  58. Zhao S. Z., X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff, Q. Long. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33(8): 975–984, 2000. doi:10.1016/S0021-9290(00)00043-9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Mr. Corey Shum in the Enabling Technology Laboratory, University of Alabama at Birmingham for extracting geometry data from the CT scan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Anayiotos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YH., Kim, JE., Ito, Y. et al. Hemodynamic Analysis of a Compliant Femoral Artery Bifurcation Model using a Fluid Structure Interaction Framework. Ann Biomed Eng 36, 1753–1763 (2008). https://doi.org/10.1007/s10439-008-9558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9558-0

Keywords

Navigation