Skip to main content
Log in

The Effect of Formalin Preservation Time and Temperature on the Material Properties of Bovine Femoral Cortical Bone Tissue

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Literature has reported controversial findings on whether formalin affected bone properties, or not, especially when different preservation time durations and temperatures were involved. Hence, accurately and systematically quantifying the effect of formalin on the mechanical properties of bone using a large dataset is crucial for assessing biomechanical responses based on fixed specimens. A total of 154 longitudinal and 149 transverse cuboid-shaped (12 mm × 2 mm × 0.5 mm) specimens from the midsection of 12 bovine femora from six bovines were prepared and assigned to ten groups, including fresh-frozen, formalin-preserved at 25 °C for 4 weeks and 8 weeks, and formalin-preserved at 4 °C for 4 weeks and 8 weeks. All specimens underwent quasi-static three-point bending tests with a loading rate of 0.02 mm/s. The Young’s modulus, yield stress, yield strain, tangent modulus, effective plastic strain, ultimate stress, and toughness were calculated by optimizing the material parameters to make the force–displacement curve of the finite element prediction consistent with the experimental curve, combined with specimen-specific finite element models. Preservation time and temperature both had significant effects on the Young’s modulus, yield stress, effective plastic strain, yield strain and ultimate stress of cortical bone (p < 0.05). The Young’s modulus, yield stress, and ultimate stress of longitudinal specimens decreased significantly with the increase of preservation time, and the yield strain increased significantly. As the preservation temperature increases, the Young’s modulus of the transverse sample decreased significantly, and the yield strain increased significantly. The preservation time mainly affects the longitudinal specimens, while the preservation temperature mainly affects the transverse specimens. Formalin preservation of bovine femoral cortical bones at a lower temperature and less than 4 weeks is recommended for biomechanical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abdel-Wahab, A. A., K. Alam, and V. V. Silberschmidt. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. J. Mech. Behav. Biomed. Mater. 4:807–820, 2011.

    Article  PubMed  Google Scholar 

  2. Akkiraju, H., P. P. Srinivasan, X. Xu, X. Jia, C. B. K. Safran, and A. Nohe. Ck2.1, a bone morphogenetic protein receptor type ia mimetic peptide, repairs cartilage in mice with destabilized medial meniscus. Stem Cell Res Ther. 8:82, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Albert, C. I., J. Jameson, and G. Harris. Design and validation of bending test method for characterization of miniature pediatric cortical bone specimens. Proc. Inst. Mech. Eng. Part H 227:105–113, 2012.

    Article  Google Scholar 

  4. Asaka, T., and H. Kikugawa. Influence of preservation in two kinds of formaldehyde solutions on the fracture characteristics of bovine femoral compact bones. Mater. Trans. 48:16–20, 2007.

    Article  CAS  Google Scholar 

  5. Baum, T., E. Grande Garcia, R. Burgkart, O. Gordijenko, H. Liebl, P. M. Jungmann, M. Gruber, T. Zahel, E. J. Rummeny, S. Waldt, and J. S. Bauer. Osteoporosis imaging: Effects of bone preservation on mdct-based trabecular bone microstructure parameters and finite element models. BMC Med. Imaging 15:22, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bian, D., J. Deng, N. Li, X. Chu, Y. Liu, W. Li, H. Cai, P. Xiu, Y. Zhang, Z. Guan, Y. Zheng, Y. Kou, B. Jiang, and R. Chen. In vitro and in vivo studies on biomedical magnesium low-alloying with elements gadolinium and zinc for orthopedic implant applications. ACS Appl. Mater. Interfaces 10:4394–4408, 2018.

    Article  CAS  PubMed  Google Scholar 

  7. Boskey, A. L., M. L. Cohen, and P. G. Bullough. Hard tissue biochemistry: A comparison of fresh-frozen and formalin-fixed tissue samples. Calcif. Tissue Int. 34:328–331, 1982.

    Article  CAS  PubMed  Google Scholar 

  8. Burkhart, K. J., T. E. Nowak, J. Blum, S. Kuhn, M. Welker, W. Sternstein, L. P. Mueller, and P. M. Rommens. Influence of formalin fixation on the biomechanical properties of human diaphyseal bone. Biomed. Tech. 55:361–365, 2010.

    Article  Google Scholar 

  9. Cowin, S. C. Bone Mechanics Handbook (2nd ed.). Boca Raton, FL: CRC Press, 2001.

    Book  Google Scholar 

  10. Currey, J. D., K. Brear, P. Zioupos, and G. C. Reilly. Effect of formaldehyde fixation on some mechanical properties of bovine bone. Biomaterials 16:1267–1271, 1995.

    Article  CAS  PubMed  Google Scholar 

  11. French, D., and J. T. Edsall. The reactions of formaldehyde with amino acids and proteins. Adv. Protein Chem. 2:277–335, 1945.

    Article  CAS  Google Scholar 

  12. Goh, J. C., E. J. Ang, and K. Bose. Effect of preservation medium on the mechanical properties of cat bones. Acta Orthop. Scand. 60:465–467, 1989.

    Article  CAS  PubMed  Google Scholar 

  13. Granke, M., A. Coulmier, S. Uppuganti, J. A. Gaddy, M. D. Does, and J. S. Nyman. Insights into reference point indentation involving human cortical bone: Sensitivity to tissue anisotropy and mechanical behavior. J. Mech. Behav. Biomed. Mater. 37:174–185, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guan, F., X. Han, H. Mao, C. Wagner, Y. N. Yeni, and K. H. Yang. Application of optimization methodology and specimen-specific finite element models for investigating material properties of rat skull. Ann. Biomed. Eng. 39:85–95, 2011.

    Article  PubMed  Google Scholar 

  15. Hamer, A., J. Strachan, M. Black, C. Ibbotson, I. Stockley, and R. Elson. Biomechanical properties of cortical allograft bone using a new method of bone strength measurement: A comparison of fresh, fresh-frozen and irradiated bone. J Bone Joint Surg. J. 78:363–368, 1996.

    Article  CAS  Google Scholar 

  16. Hammer, N., C. Voigt, M. Werner, F. Hoffmann, K. Bente, H. Kunze, R. Scholz, and H. Steinke. Ethanol and formaldehyde fixation irreversibly alter bones’ organic matrix. J. Mech. Behav. Biomed. Mater. 29:252–258, 2014.

    Article  CAS  PubMed  Google Scholar 

  17. Healing, T. D., P. N. Hoffman, and S. E. Young. The infection hazards of human cadavers. Commun. Dis. Rep. CDR Rev. 5:R61–68, 1995.

    CAS  PubMed  Google Scholar 

  18. Kiernan, J. A. Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: What they are and what they do. Microsc Today 1:8–12, 2000.

    Article  Google Scholar 

  19. Kikugawa, H., and T. Asaka. Effect of long-term formalin preservation on bending properties and fracture toughness of bovine compact bone. Mater. Trans. 45:3060–3064, 2004.

    Article  CAS  Google Scholar 

  20. Mayer, A., M. C. Royer, D. J. Summerlin, M. Moore, C. Galer, T. Z. Shipchandler, and M. S. Kokoska. Rapid mandible margins for intraoperative assessment. Am. J. Otolaryngol. 36:324–329, 2015.

    Article  PubMed  Google Scholar 

  21. McElhaney, J., J. Fogle, E. Byars, and G. Weaver. Effect of embalming on the mechanical properties of beef bone. J. Appl. Physiol. 19:1234–1236, 1964.

    Article  CAS  PubMed  Google Scholar 

  22. Mick, E., H. Steinke, T. Wolfskämpf, J. Wieding, N. Hammer, M. Schulze, R. Souffrant, and R. Bader. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone. Curr. Direct. Biomed. Eng. 1:335–339, 2015.

    Article  Google Scholar 

  23. Morita, K., K. Doi, H. Oue, S. Kajihara, K. Hayashi, and Y. Akagawa. Influence of formalin fixation on the implant stability quotient and mechanical characteristics of bone. Br. J. Oral Maxillofac. Surg. 51:550–554, 2013.

    Article  PubMed  Google Scholar 

  24. Nazarian, A., B. J. Hermannsson, J. Muller, D. Zurakowski, and B. D. Snyder. Effects of tissue preservation on murine bone mechanical properties. J. Biomech. 42:82–86, 2009.

    Article  PubMed  Google Scholar 

  25. Novitskaya, E., P.-Y. Chen, E. Hamed, L. Jun, V. A. Lubarda, I. Jasiuk, and J. McKittrick. Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: A review. Theoret. Appl. Mech. 38:209–297, 2011.

    Article  Google Scholar 

  26. Ohman, C., E. Dall’Ara, M. Baleani, S. V. S. Jan, and M. Viceconti. The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone. Clin. Biomech. 23:1294–1298, 2008.

    Article  Google Scholar 

  27. Sakamoto, K., Y. Matsushita, T. Minamizato, Y. Katsuki, K.-I. Katsube, and A. Yamaguchi. The bone regeneration model and primary osteoblastic cell culture used in the analysis of Ccn3 transgenic and knockout mice. Methods Mol. Biol. 1489:309–324, 2017.

    Article  CAS  PubMed  Google Scholar 

  28. Sedlin, E. D. A rheologic model for cortical bone: A study of the physical properties of human femoral samples. Acta Orthop. Scand. 36:1–77, 1965.

    Article  Google Scholar 

  29. Sedlin, E. D., and C. Hirsch. Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop. Scand. 37:29–48, 1966.

    Article  CAS  PubMed  Google Scholar 

  30. Seo, B. B., J. T. Koh, and S. C. Song. Tuning physical properties and bmp-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect. Biomaterials 122:91–104, 2017.

    Article  CAS  PubMed  Google Scholar 

  31. Tong, J. Effects of fixative solution ph and Ca2+ concentration on decalcification of ancient corpse bone. Jianghan Archaeol. 106:113–116, 2008.

    Google Scholar 

  32. Topp, T., T. Muller, S. Huss, P. H. Kann, E. Weihe, S. Ruchholtz, and R. P. Zettl. Embalmed and fresh frozen human bones in orthopedic cadaveric studies: Which bone is authentic and feasible? A mechanical study. Acta Orthopaed 83:543–547, 2012.

    Article  Google Scholar 

  33. Turner, C. H. Biomechanics of bone: Determinants of skeletal fragility and bone quality. Osteoporos. Int. 13:97–104, 2002.

    Article  CAS  PubMed  Google Scholar 

  34. Turner, C. H., and D. B. Burr. Experimental techniques for bone mechanics. In: Bone Mechanics Handbook2nd, edited by S. C. Cowin. Boca Raton, FL: CPC Press, 2001, pp. 7–20.

    Google Scholar 

  35. Unger, S., M. Blauth, and W. Schmoelz. Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone. Bone 47:1048–1053, 2010.

    Article  CAS  PubMed  Google Scholar 

  36. van Haaren, E. H., B. C. van der Zwaard, A. J. van der Veen, I. C. Heyligers, P. I. J. M. Wuisman, and T. H. Smit. Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthop. 79:708–716, 2008.

    Article  PubMed  Google Scholar 

  37. Wieding, J., E. Mick, A. Wree, and R. Bader. Influence of three different preservative techniques on the mechanical properties of the ovine cortical bone. Acta Bioeng. Biomech. 17:137–146, 2015.

    PubMed  Google Scholar 

  38. Wittenburg, G., C. Volkel, R. Mai, and G. Lauer. Immunohistochemical comparison of differentiation markers on paraffin and plastic embedded human bone samples. J. Physiol. Pharmacol. 60:43–49, 2009.

    PubMed  Google Scholar 

  39. Zhang, G., X. Deng, F. Guan, Z. Bai, L. Cao, and H. Mao. The effect of storage time in saline solution on the material properties of cortical bone tissue. Clin. Biomech. (Bristol, Avon) 57:56–66, 2018.

    Article  Google Scholar 

  40. Zhang, G., S. Xu, J. Yang, F. Guan, L. Cao, and H. Mao. Combining specimen-specific finite-element models and optimization in cortical-bone material characterization improves prediction accuracy in three-point bending tests. J. Biomech. 76:103–111, 2018.

    Article  PubMed  Google Scholar 

  41. Zhang, G., J. Yang, F. Guan, D. Chen, N. Li, L. Cao, and H. Mao. Quantifying the effects of formalin fixation on the mechanical properties of cortical bone using beam theory and optimization methodology with specimen-specific finite element models. J. Biomech. Eng. 138:094502, 2016.

    Article  Google Scholar 

  42. Zimmermann, E. A., E. Schaible, B. Gludovatz, F. N. Schmidt, C. Riedel, M. Krause, E. Vettorazzi, C. Acevedo, M. Hahn, K. Puschel, S. Tang, M. Amling, R. O. Ritchie, and B. Busse. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions. Sci. Rep. 6:21072, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (51205118 and 11402296) and the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University (51475002). We also acknowledge support from the Canada Research Chairs program.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haojie Mao.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Grouping of the Five Preservation Methods for Longitudinal and Transverse Specimens

Groups

Specimen direction

Preservation temperature (°C)

Preservation time (weeks)

Sample size

Femur #1

Femur #2

Femur #3

Femur #4

Femur #5

Femur #6

Femur #7

Femur #8

Femur #9

Femur #10

Femur #11

Femur #12

Total

A/P/L/M

A/P/L/M

A/P/L/M

A/P/L/M

A/P/L/M

A/P/L/M

A/P/L/M

A/P/L/M

A/P/L/M

A/P/L/M

A/P/L/M

A/P/L/M

A/P/L/M

Total

LF

Longitudinal

1/1/1/0

1/1/1/1

1/1/1/1

1/1/1/1

1/1/1/1

1/1/0/1

1/1/1/1

1/0/1/1

1/0/1/1

0/1/1/1

1/1/1/1

1/1/1/1

11/10/11/11

43

LE4w-25

Longitudinal

25

4

1/0/1/1

0/1/1/1

1/1/1/0

1/0/1/1

1/1/1/0

1/0/1/1

1/1/0/1

1/1/0/1

1/1/1/1

1/1/1/0

1/0/1/1

0/1/1/1

10/9/9/9

37

LE8w-25

Longitudinal

25

8

1/1/0/1

1/1/0/1

1/1/1/1

0/1/1/1

1/0/1/1

1/1/1/0

1/1/1/0

0/1/1/1

1/1/0/1

1/0/1/1

0/1/1/1

1/0/1/1

9/9/9/10

37

LE4w-4

Longitudinal

4

4

0/1/1/0

0/1/0/0

0/0/1/0

1/0/0/0

0/1/0/1

0/0/0/1

0/0/0/1

0/1/1/0

0/0/1/0

1/0/0/0

1/0/0/1

1/0/0/0

4/4/4/4

16

LE8w-4

Longitudinal

4

8

1/0/0/1

1/0/1/0

0/0/0/1

0/1/0/1

0/0/0/1

0/1/1/0

0/1/1/0

1/0/0/0

1/1/0/0

0/1/0/1

1/0/1/0

0/1/1/0

5/6/5/5

21

TF

Transverse

1/1/1/1

0/1/1/1

1/1/1/1

1/1/1/1

1/1/1/1

1/1/1/1

1/0/1/1

1/1/1/1

1/1/1/1

1/1/1/0

0/1/1/1

1/1/1/0

10/11/12/10

43

TE4w-25

Transverse

25

4

0/1/1/1

1/1/1/0

1/1/1/1

1/1/1/1

1/0/1/1

1/1/1/1

1/1/1/1

1/1/1/1

0/1/1/1

1/0/1/1

1/1/1/1

1/1/0/1

10/10/11/11

42

TE8w-25

Transverse

25

8

1/1/1/0

1/1/1/1

0/1/1/1

1/1/1/0

1/1/1/1

0/1/1/1

1/1/1/1

1/0/1/1

1/1/0/0

1/1/1/1

1/0/0/1

1/0/1/1

10/9/10/9

38

TE4w-4

Transverse

4

4

1/0/0/0

0/0/0/1

0/1/0/0

0/0/0/1

1/0/0/0

0/0/1/0

0/0/1/0

0/1/0/0

0/0/1/0

0/0/0/1

1/0/0/0

0/1/0/0

3/3/3/3

12

TE8w-4

Transverse

4

8

0/0/0/1

1/0/0/0

1/0/0/0

0/0/1/0

0/1/0/0

1/0/0/0

0/1/0/0

0/1/0/0

1/0/0/1

0/1/0/0

0/0/1/0

0/0/1/1

4/4/3/3

14

Appendix B: Two-Way Analysis of Variance and Its Results

There are two factors to be concerned about in this study, preservation time and preservation temperature. To make the problem easier to analyze, one factor is fixed at a certain level (as a constant), and another factor is used as a variable for statistical analysis. Longitudinal specimens and transvers specimens were studied separately. For longitudinal specimens, the sets of LF/LE4w-25/LE8w-25 and LF/LE4w-4/LE8w-4 were used to investigate whether the preservation time had an effect on the mechanical properties of bone at 25 °C and 4 °C, respectively; the sets of LF/LE4w-4/LE4w-25 and LF/LE8w-4/LE8w-25 were used to investigate whether the preservation temperature had an effect on the mechanical properties of bone after preserved for 4 weeks and 8 weeks, respectively. The transverse specimens were also subjected to similar sets between groups (Table 3). For material parameters that satisfy a normal distribution with homogeneous variance, one-way analysis of variance (ANOVA) was used to study the significance of the differences in the mean of material parameters of each group in the set; otherwise, a nonparametric Kruskal–Wallis test was used. Multiple comparison method was used to study the significance of differences between groups in each of the above sets. Tukey’s test was used for the parameters that met homogeneity of variance; otherwise, Dunnett’s T3 test was used. All statistical analyses were performed by using SPSS (Version 21, IBM Corporation, Somers, NY, USA) with a significance level of 0.05 (Fig. 5, Tables 3, 4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Wang, S., Xu, S. et al. The Effect of Formalin Preservation Time and Temperature on the Material Properties of Bovine Femoral Cortical Bone Tissue. Ann Biomed Eng 47, 937–952 (2019). https://doi.org/10.1007/s10439-019-02197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02197-1

Keywords

Navigation