Skip to main content
Log in

Design considerations for patient-specific bone fixation plates: a literature review

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In orthopedic surgery, patient-specific bone plates are used for fixation when conventional bone plates do not fit the specific anatomy of a patient. However, plate failure can occur due to a lack of properly established design parameters that support optimal biomechanical properties of the plate.

This review provides an overview of design parameters and biomechanical properties of patient-specific bone plates, which can assist in the design of the optimal plate.

A literature search was conducted through PubMed and Embase, resulting in the inclusion of 78 studies, comprising clinical studies using patient-specific bone plates for fracture fixation or experimental studies that evaluated biomechanical properties or design parameters of bone plates. Biomechanical properties of the plates, including elastic stiffness, yield strength, tensile strength, and Poisson’s ratio are influenced by various factors, such as material properties, geometry, interface distance, fixation mechanism, screw pattern, working length and manufacturing techniques.

Although variations within studies challenge direct translation of experimental results into clinical practice, this review serves as a useful reference guide to determine which parameters must be carefully considered during the design and manufacturing process to achieve the desired biomechanical properties of a plate for fixation of a specific type of fracture.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Caiti G et al (2019) Biomechanical considerations in the design of patient-specific fixation plates for the distal radius. Med Biol Eng Comput 57(5):1099–1107

    Article  CAS  PubMed  Google Scholar 

  2. Chen X (2018) Parametric design of patient-specific fixation plates for distal femur fractures. Proc Inst Mech Eng H 232(9):901–911

    Article  PubMed  Google Scholar 

  3. Manić M et al (2015) Design of 3D model of customized anatomically adjusted implants. Facta Univ Ser: Mech Eng 13(3):269–282

    Google Scholar 

  4. Benli S et al (2008) Evaluation of bone plate with low-stiffness material in terms of stress distribution. J Biomech 41(15):3229–3235

    Article  PubMed  Google Scholar 

  5. Fouad H (2010) Effects of the bone-plate material and the presence of a gap between the fractured bone and plate on the predicted stresses at the fractured bone. Med Eng Phys 32(7):783–789

    Article  CAS  PubMed  Google Scholar 

  6. Uhthoff HK, Poitras P, Backman DS (2006) Internal plate fixation of fractures: short history and recent developments. J Orhopaedic Sci 11(2):118–126

    Article  Google Scholar 

  7. Saidpour SH (2006) Assessment of carbon fibre composite fracture fixation plate using finite element analysis. Ann Biomed Eng 34(7):1157–1163

    Article  PubMed  Google Scholar 

  8. Smith KE et al (2016) Use of 3D printed bone plate in novel technique to surgically correct hallux valgus deformities. Tech Orthop 31(3):181–189

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tilton M et al (2020) Additive manufacturing of fracture fixation implants: design, material characterization, biomechanical modeling and experimentation. Addit Manuf 33:101137

    CAS  Google Scholar 

  10. Liu PC et al (2014) A study on the mechanical characteristics of the EBM-printed Ti-6Al-4V LCP plates in vitro. J Orthop Surg Res 9:106

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tseng WJ et al (2016) Notch sensitivity jeopardizes titanium locking plate fatigue strength. Injury 47(12):2726–2732

    Article  PubMed  Google Scholar 

  12. Fan X et al (2018) Parametric study of patient-specific femoral locking plates based on a combined musculoskeletal multibody dynamics and finite element modeling. Proc Inst Mech Eng H 232(2):114–126

    Article  PubMed  Google Scholar 

  13. Chen X, He K, Chen Z (2017) A Novel Computer-Aided Approach for Parametric Investigation of Custom Design of Fracture Fixation Plates. Comput Math Methods Med 2017:7372496

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dobbe JG et al (2013) Patient-tailored plate for bone fixation and accurate 3D positioning in corrective osteotomy. Med Biol Eng Comput 51(1–2):19–27

    Article  CAS  PubMed  Google Scholar 

  15. Gutwald R, Jaeger R, Lambers FM (2017) Customized mandibular reconstruction plates improve mechanical performance in a mandibular reconstruction model. Comput Methods Biomech Biomed Engin 20(4):426–435

    Article  PubMed  Google Scholar 

  16. Yang WF et al (2018) Three-dimensional printing of patient-specific surgical plates in head and neck reconstruction: A prospective pilot study. Oral Oncol 78:31–36

    Article  PubMed  Google Scholar 

  17. Stokbro K, Bell RB, Thygesen T (2018) Patient-Specific Printed Plates Improve Surgical Accuracy In Vitro. J Oral Maxillofac Surg 76(12):2647.e1-2647.e9

    Article  PubMed  Google Scholar 

  18. Willemsen K et al (2019) Challenges in the design and regulatory approval of 3d-printed surgical implants: a two-case series. Lancet Digit Health 1(4):e163–e171

    Article  PubMed  Google Scholar 

  19. Xie P et al (2017) Comparison of conventional reconstruction plate versus direct metal laser sintering plate: an in vitro mechanical characteristics study. J Orthop Surg Res 12(1):128

    Article  PubMed  PubMed Central  Google Scholar 

  20. Petersik A et al (2018) A numeric approach for anatomic plate design. Injury 49(Suppl 1):S96-s101

    Article  PubMed  Google Scholar 

  21. Chen J et al (2023) Biomechanical evaluation of reconstruction of the posterior complex in restorative laminoplasty with miniplates. BMC Musculoskelet Disord 24(1):298

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chung C-Y (2018) A simplified application (app) for the parametric design of screw-plate fixation of bone fractures. J Mech Behav Biomed Mater 77(642–648)

  23. Freitas A et al (2021) New fixation method for Pauwels type III femoral neck fracture: a finite element analysis of sliding hip screw, L-shaped, and L-shaped with medial plate. Eur J Orthop Surg Traumatol 31(6):1069–1075

    Article  PubMed  Google Scholar 

  24. Gupta SK et al (2021) Enhanced biomechanical performance of additively manufactured Ti-6Al-4V bone plates. J Mech Behav Biomed Mater 119:104552

    Article  CAS  PubMed  Google Scholar 

  25. Kaymaz I, et al. (2022) A new design for the humerus fixation plate using a novel reliability-based topology optimization approach to mitigate the stress shielding effect. Clin Biomech 99

  26. Kim SJ et al (2017) Biomechanical Properties of 3-Dimensional Printed Volar Locking Distal Radius Plate: Comparison With Conventional Volar Locking Plate. J Hand Surg Am 42(9):747.e1-747.e6

    Article  PubMed  Google Scholar 

  27. Kimsal J et al (2015) Finite element analysis of plate-screw systems used in medial opening wedge proximal tibial osteotomies. Int J Biomed Eng Technol 19(2):154–168

    Article  Google Scholar 

  28. Lin CH et al (2018) Modification of the screw hole structures to improve the fatigue strength of locking plates. Clin Biomech (Bristol, Avon) 54:71–77

    Article  PubMed  Google Scholar 

  29. MacLeod AR et al (2018) The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates: An experimental and finite element study. Bone Joint Res 7(12):639–649

    Article  CAS  PubMed  Google Scholar 

  30. Münch M et al (2022) Stresses and deformations of an osteosynthesis plate in a lateral tibia plateau fracture. Biomed Tech 67(1):43–52

    Article  Google Scholar 

  31. Samsami S et al (2022) Biomechanical Comparison of 2 Double Plating Methods in a Coronal Fracture Model of Bicondylar Tibial Plateau Fractures. J Orthop Trauma 36(4):E129–E135

    Article  PubMed  Google Scholar 

  32. Schader JF et al (2022) One size may not fit all: patient-specific computational optimization of locking plates for improved proximal humerus fracture fixation. J Shoulder Elbow Surg 31(1):192–200

    Article  PubMed  Google Scholar 

  33. Shams SF, et al. (2022) The comparison of stress and strain between custom-designed bone plates (CDBP) and locking compression plate (LCP) for distal femur fracture. Eur J Orthop Surg Traumatol

  34. Sokol SC et al (2011) Biomechanical properties of volar hybrid and locked plate fixation in distal radius fractures. J Hand Surg Am 36(4):591–597

    Article  PubMed  Google Scholar 

  35. Soni A, Singh B (2020) Design and Analysis of Customized Fixation Plate for Femoral Shaft. Indian J Orthop 54(2):148–155

    Article  PubMed  PubMed Central  Google Scholar 

  36. Subasi O et al (2023) Investigation of lattice infill parameters for additively manufactured bone fracture plates to reduce stress shielding. Comput Biol Med 161:107062

    Article  PubMed  Google Scholar 

  37. Stoffel K et al (2003) Biomechanical testing of the LCP–how can stability in locked internal fixators be controlled? Injury 34:11–19

    Article  Google Scholar 

  38. Synek A, Baumbach SF, Pahr DH (2021) Towards optimization of volar plate fixations of distal radius fractures: Using finite element analyses to reduce the number of screws. Clin Biomech (Bristol, Avon) 82:105272

    Article  PubMed  Google Scholar 

  39. Reina-Romo E et al (2014) Biomechanical design of less invasive stabilization system femoral plates: computational evaluation of the fracture environment. Proc Inst Mech Eng H 228(10):1043–1052

    Article  PubMed  Google Scholar 

  40. Thomrungpiyathan T et al (2021) A custom-made distal humerus plate fabricated by selective laser melting. Comput Methods Biomech Biomed Engin 24(6):585–596

    Article  PubMed  Google Scholar 

  41. Vancleef S et al (2022) Thin patient-specific clavicle fracture fixation plates can mechanically outperform commercial plates: An in silico approach. J Orthop Res 40(7):1695–1706

    Article  PubMed  Google Scholar 

  42. Wang D, et al. (2017) Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting. Materials (Basel) 10(1)

  43. Wang J et al (2020) Plating System Design Determines Mechanical Environment in Long Bone Mid-shaft Fractures: A Finite Element Analysis. J Invest Surg 33(8):699–708

    Article  PubMed  Google Scholar 

  44. Wang Y et al (2022) Biomechanical Evaluation of an Oblique Lateral Locking Plate System for Oblique Lumbar Interbody Fusion: A Finite Element Analysis. World Neurosurg 160:e126–e141

    Article  PubMed  Google Scholar 

  45. Wee H et al (2017) Finite Element-Derived Surrogate Models of Locked Plate Fracture Fixation Biomechanics. Ann Biomed Eng 45(3):668–680

    Article  PubMed  Google Scholar 

  46. Yao Y et al (2021) A personalized 3D-printed plate for tibiotalocalcaneal arthrodesis: Design, fabrication, biomechanical evaluation and postoperative assessment. Comput Biol Med 133. https://doi.org/10.1016/j.compbiomed.2021.104368

  47. Zhang X, et al. (2019) Finite element analysis of spiral plate and Herbert screw fixation for treatment of midshaft clavicle fractures. Medicine (United States) 98(34)

  48. Chakladar ND, Harper LT, Parsons AJ (2016) Optimisation of composite bone plates for ulnar transverse fractures. J Mech Behav Biomed Mater 57:334–346

    Article  CAS  PubMed  Google Scholar 

  49. Kanchanomai C, Muanjan P, Phiphobmongkol V (2010) Stiffness and endurance of a locking compression plate fixed on fractured femur. J Appl Biomech 26(1):10–16

    Article  PubMed  Google Scholar 

  50. Murat F, Kaymaz I, Korkmaz IH (2021) A new porous fixation plate design using the topology optimization. Med Eng Phys 92:18–24

    Article  PubMed  Google Scholar 

  51. Olender G et al (2011) A preliminary study of bending stiffness alteration in shape changing nitinol plates for fracture fixation. Ann Biomed Eng 39(5):1546–1554

    Article  PubMed  Google Scholar 

  52. Peleg E et al (2006) A short plate compression screw with diagonal bolts–a biomechanical evaluation performed experimentally and by numerical computation. Clin Biomech (Bristol, Avon) 21(9):963–968

    Article  PubMed  Google Scholar 

  53. Teo AQA et al (2022) Standard versus customised locking plates for fixation of schatzker ii tibial plateau fractures. Injury 53(2):676–682

    Article  PubMed  Google Scholar 

  54. Yan L et al (2020) Finite element analysis of bone and implant stresses for customized 3D-printed orthopaedic implants in fracture fixation. Med Biol Eng Comput 58(5):921–931

    Article  PubMed  Google Scholar 

  55. Kabiri A, G Liaghat, F Alavi (2021) Biomechanical evaluation of glass fiber/polypropylene composite bone fracture fixation plates: Experimental and numerical analysis. Comp Biol Med 132

  56. Le C et al (2023) Experimental and numerical investigation of 3D-Printed bone plates under four-point bending load utilizing machine learning techniques. J Mech Behav Biomed Mater 143:105885

    Article  PubMed  Google Scholar 

  57. Nobari S, Katoozian HR, Zomorodimoghadam S (2010) Three-dimensional design optimisation of patient-specific femoral plates as a means of bone remodelling reduction. Comput Methods Biomech Biomed Engin 13(6):819–827

    Article  CAS  PubMed  Google Scholar 

  58. Ren W et al (2022) The Study of Biomechanics and Clinical Anatomy on a Novel Plate Designed for Posterolateral Tibial Plateau Fractures via Anterolateral Approach. Front Bioeng Biotechnol 10:818610

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sheng X et al (2022) Femoral neck fractures in middle-aged and young adults using femoral neck system assisted by 3D printed guide plate. Chin J Tissue Eng Res 26(33):5290–5296

    Google Scholar 

  60. Arnone JC et al. (2013) Computer-aided engineering approach for parameteric investigation of locked plating systems design. J Med Devices 7(2)

  61. Ma L et al (2017) 3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee. Sci Rep 7(1):7626

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shin SH, et al. (2022) Does a Customized 3D Printing Plate Based on Virtual Reduction Facilitate the Restoration of Original Anatomy in Fractures? J Pers Med 12(6). https://doi.org/10.3390/jpm12060927

  63. Ghimire S et al (2019) Effects of dynamic loading on fracture healing under different locking compression plate configurations: A finite element study. J Mech Behav Biomed Mater 94:74–85

    Article  PubMed  Google Scholar 

  64. Wen X et al (2020) Comparative biomechanical testing of customized three-dimensional printing acetabular-wing plates for complex acetabular fractures. Adv Clin Exp Med 29(4):459–468

    Article  PubMed  Google Scholar 

  65. Wang C et al (2020) Three-dimensional printing of patient-specific plates for the treatment of acetabular fractures involving quadrilateral plate disruption. BMC Musculoskelet Disord 21(1):451

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ahmad M et al (2007) Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability? Injury 38(3):358–364

    Article  CAS  PubMed  Google Scholar 

  67. del Pino JG (2014) A new total wrist fusion locking plate for patients with small hands or with failed partial wrist fusion: preliminary experience. J Wrist Surg 3(2):148–153

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sodl JF, Kozin SH, Kaufmann RA (2002) Development and use of a wrist fusion plate for children and adolescents. J Pediatr Orthop 22(2):146–149. https://journals.lww.com/pedorthopaedics/toc/2002/03000

  69. Peterson JM et al (2018) Stiffness Matters: Part I-The Effects of Plate Stiffness on the Biomechanics of ACDF In Vitro. Spine (Phila Pa 1976) 43(18):E1061-e1068

    Article  PubMed  Google Scholar 

  70. Märdian S et al (2015) Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin Biomech 30(4):391–396

    Article  Google Scholar 

  71. Wang CC et al (2020) Biomechanical analysis of the treatment of intertrochanteric hip fracture with different lengths of dynamic hip screw side plates. Technol Health Care 28(6):593–602

    Article  PubMed  Google Scholar 

  72. Wang L et al (2021) Bone morphological feature extraction for customized bone plate design. Sci Rep 11(1):15617. https://doi.org/10.1038/s41598-021-94924-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Teo AQA et al (2021) Point-of-Care 3D Printing: A Feasibility Study of Using 3D Printing for Orthopaedic Trauma. Injury 52(11):3286–3292

    Article  PubMed  Google Scholar 

  74. Bastias C et al (2014) Are locking plates better than non-locking plates for treating distal tibial fractures? Foot Ankle Surg 20(2):115–119

    Article  PubMed  Google Scholar 

  75. Oraa J, et al. (2023) Derotation tibial osteotomy with custom cutting guides and custom osteosynthesis plate printed with 3D technology: Case and technical note. Annal 3D Print Med 9

  76. Gardner MJ et al (2010) Less rigid stable fracture fixation in osteoporotic bone using locked plates with near cortical slots. Injury 41(6):652–656. https://doi.org/10.1016/j.injury.2010.02.022

    Article  PubMed  Google Scholar 

  77. Jo WL et al (2023) Structural analysis of customized 3D printed plate for pelvic bone by comparison with conventional plate based on bending process. Sci Rep 13(1):10542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu H-Y et al (2020) Personalized three-dimensional printed anterior titanium plate to treat double-column acetabular fractures: A retrospective case-control study. Orthop Surg 12(4):1212–1222

    Article  PubMed  PubMed Central  Google Scholar 

  79. Xu M et al (2014) Custom-made locked plating for acetabular fracture: a pilot study in 24 consecutive cases. Orthopedics 37(7):e660–e670

    Article  PubMed  Google Scholar 

  80. Dobbe JG et al (2014) Patient-specific distal radius locking plate for fixation and accurate 3D positioning in corrective osteotomy. Strateg Trauma Limb Reconstr 9(3):179–183

    Article  CAS  Google Scholar 

  81. Brodke DS et al (2001) Dynamic cervical plates: biomechanical evaluation of load sharing and stiffness. Spine (Phila Pa 1976) 26(12):1324–9

    Article  CAS  PubMed  Google Scholar 

  82. Sharma S, Mudgal D, Gupta V (2023) Advancement in biological and mechanical behavior of 3D printed poly lactic acid bone plates using polydopamine coating: Innovation for healthcare. J Mech Behav Biomed Mater 143:105929

    Article  CAS  PubMed  Google Scholar 

  83. Hwang BY, Lee JW (2020) Lingual Application of Pre-Bent Reconstruction Plate for Segmental Mandibular Defect: Easy and Accurate Method Through the Buccal Drilling Approach Using Computer-Aided Design/Computer-Aided Manufacturing Surgical Guides. J Craniofac Surg 31(3):851–852

    Article  PubMed  Google Scholar 

  84. Jeong SH et al (2022) Patient-specific high tibial osteotomy for varus malalignment: 3D-printed plating technique and review of the literature. Eur J Orthop Surg Traumatol 32(5):845–855. https://doi.org/10.1007/s00590-021-03043-8

    Article  PubMed  Google Scholar 

  85. Ijpma FFA et al (2021) Feasibility of Imaging-Based 3-Dimensional Models to Design Patient-Specific Osteosynthesis Plates and Drilling Guides. JAMA Netw Open 4(2):e2037519

    Article  PubMed  PubMed Central  Google Scholar 

  86. Merema BJ et al (2017) The design, production and clinical application of 3D patient-specific implants with drilling guides for acetabular surgery. Injury 48(11):2540–2547

    Article  CAS  PubMed  Google Scholar 

  87. Edelmann A, M Dubis, R Hellmann (2020) Selective Laser Melting of Patient Individualized Osteosynthesis Plates-Digital to Physical Process Chain. Materials (Basel) 13(24)

  88. Dobbe JGG et al (2021) Patient-specific plate for navigation and fixation of the distal radius: a case series. Int J Comput Assist Radiol Surg 16(3):515–524

    Article  PubMed  PubMed Central  Google Scholar 

  89. Schindele S, et al. (2022) Three-Dimensionally Planned and Printed Patient-Tailored Plates for Corrective Osteotomies of the Distal Radius and Forearm. J Hand Surg Am

  90. Cao C et al (2023) Three-dimensional printing designed customized plate in the treatment of coronal fracture of distal humerus in teenager: A case report. Medicine (Baltimore) 102(2)

  91. Shuang F et al (2016) Treatment of Intercondylar Humeral Fractures With 3D-Printed Osteosynthesis Plates. Medicine (Baltimore) 95(3). https://doi.org/10.1097/md.0000000000002461

  92. Ahmed ADB, Prakash PS, Li Cynthia CM (2021) Customized 3-dimensional printed rib plating in chest wall reconstruction. JTCVS Tech 8:213–215

    Article  PubMed  PubMed Central  Google Scholar 

  93. Liu B et al (2022) Experimental study of a 3D printed permanent implantable porous Ta-coated bone plate for fracture fixation. Bioact Mater 10:269–280. https://doi.org/10.1016/j.bioactmat.2021.09.009

    Article  CAS  PubMed  Google Scholar 

  94. Fan H et al (2021) Highly Porous 3D Printed Tantalum Scaffolds Have Better Biomechanical and Microstructural Properties than Titanium Scaffolds. Biomed Res Int 2021:2899043

    Article  PubMed  PubMed Central  Google Scholar 

  95. Das S, Bourell DL, Babu SS (2016) Metallic materials for 3D printing. MRS Bull 41(10):729–741

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Lagerburg.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brouwer de Koning, S.G., de Winter, N., Moosabeiki, V. et al. Design considerations for patient-specific bone fixation plates: a literature review. Med Biol Eng Comput 61, 3233–3252 (2023). https://doi.org/10.1007/s11517-023-02900-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02900-4

Keywords

Navigation