Skip to main content
Log in

Application of Optimization Methodology and Specimen-Specific Finite Element Models for Investigating Material Properties of Rat Skull

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Finite element (FE) models of rat skull bone samples were developed by reconstructing the three-dimensional geometry of microCT images and voxel-based hexahedral meshes. An optimization-based material identification method was developed to obtain the most favorable material property parameters by minimizing differences in three-point bending test responses between experimental and simulation results. An anisotropic Kriging model and sequential quadratic programming, in conjunction with Latin Hypercube Sampling (LHS), are utilized to minimize the disparity between the experimental and FE model predicted force–deflection curves. A selected number of material parameters, namely Young’s modulus, yield stress, tangent modulus, and failure strain, are varied iteratively using the proposed optimization scheme until the assessment index ‘F’, the objective function comparing simulation and experimental force–deflection curves through least squares, is minimized. Results show that through the application of this method, the optimized models’ force–deflection curves are closely in accordance with the measured data. The average differences between the experimental and simulation data are around 0.378 N (which was 3.3% of the force peak value) and 0.227 N (which was 2.7% of the force peak value) for two different test modes, respectively. The proposed optimization methodology is a potentially useful tool to effectively help establish material parameters. This study represents a preliminary effort in the development and validation of FE models for the rat skull, which may ultimately serve to develop a more biofidelic rat head FE model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Barber, T. W. Static compression testing of specimens from an embalmed human skull. Tex. Rep. Biol. Med. 28(4):497–508, 1970.

    CAS  PubMed  Google Scholar 

  2. Bates, R. A., R. J. Buck, E. Riccomagno, and H. P. Wynn. Experimental design and observation for large systems. J. R. Stat. Soc. B 58:77–94, 1996.

    Google Scholar 

  3. Boggs, P. T., and J. W. Tolle. Sequential quadratic programming for large-scale nonlinear optimization. J. Comput. Appl. Math. 124:123–137, 2000.

    Article  Google Scholar 

  4. Chawla, A., S. Mukherjee, and B. Karthikeyan. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods. Biomech. Model. Mechanobiol. 8:67–76, 2009.

    Article  CAS  PubMed  Google Scholar 

  5. Currey, J. D., and G. Butler. The mechanical properties of bone tissue in children. J. Bone Joint Surg. 57:810–814, 1975.

    CAS  PubMed  Google Scholar 

  6. Daegling, D. J., J. L. Hotzman, W. S. McGraw, and A. J. Rapoff. Material property variation of mandibular symphyseal bone in colobine monkeys. J. Morphol. 270:194–204, 2009.

    Article  PubMed  Google Scholar 

  7. Fang, K.-T., R. Li, and A. Sudjianto. Design and modeling for computer experiments. Boca Raton: Taylor & Francis Group, 2006.

    Google Scholar 

  8. Gefen, A., N. Gefen, Q. Zhu, R. Raghupathi, and S. S. Margulies. Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20:1163–1177, 2003.

    Article  PubMed  Google Scholar 

  9. Gu, L., and R. J. Yang. Recent applications on reliability-based optimization of automotive structures. SAE Technical Paper Series, 2003-01-0152, 2003.

  10. Hallquist, J. O. LS-DYNA Theoretical Manual. Livermore, CA: Livermore Software Technology Co, 2005.

    Google Scholar 

  11. Hellmich, C., C. Kober, and B. Erdmann. Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann. Biomed. Eng. 36(1):108–122, 2008.

    Article  PubMed  Google Scholar 

  12. Jourdan, A. How to repair a second-order surface for computer experiments by Kriging. Chemom. Intell. Lab. Syst. 96(2):108–116, 2009.

    Article  CAS  Google Scholar 

  13. Kim, K.-Y., and D.-Y. Shin. Optimization of a staggered dimpled surface in a cooling channel using Kriging model. Int. J. Therm. Sci. 47(11):1464–1472, 2008.

    Article  Google Scholar 

  14. Kim, J. E., Z. P. Li, Y. Ito, C. D. Huber, A. M. Shih, A. W. Eberhardt, K. H. Yang, A. I. King, and B. K. Soni. Finite element model development of a child pelvis with optimization-based material identification. J. Biomech. 42:2191–2195, 2009.

    Article  PubMed  Google Scholar 

  15. Kober, C., B. Erdmann, C. Hellmich, R. Sader, and H. F. Zeilhofer. Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible. Comput. Methods Biomech. Biomed. Eng. 9(2):91–101, 2006.

    Article  CAS  Google Scholar 

  16. Koehler, J. R., and A. B. Owen. Computer experiments. In: Handbook of Statistics, 13: Designs and Analysis of Experiments, edited by S. Ghosh, and C.R. Rao. North-Holland: Amsterdam, 1996, pp. 261–308.

  17. Levchakov, A., E. Linder-Ganz, R. Raghupathi, S. S. Margulies, and A. Gefen. Computational studies of strain exposures in neonate and mature rat brains during closed head impact. J. Neurotrauma 23:1570–1580, 2006.

    Article  PubMed  Google Scholar 

  18. Mao, H., X. Jin, L. Zhang, K. H. Yang, T. Igarashi, L. Noble-Haeusslein, and A. I. King. Finite element analysis of controlled cortical impact induced cell loss. J. Neurotrauma 27:877–888, 2010.

    Article  PubMed  Google Scholar 

  19. Mao, H., K. H. Yang, A. I. King, and K. Yang. Computational neurotrauma—design, simulation, and analysis of controlled cortical impact model. Biomech. Model. Mechanobiol., 2010. doi:10.1007/s10237-010-0212-z.

  20. Mao, H., L. Zhang, K. H. Yang, and A. I. King. Application of a finite element model of the brain to study traumatic brain injury mechanisms in the rat. Stapp Car Crash J. 50:583–600, 2006.

    PubMed  Google Scholar 

  21. McElhaney, J. H., J. L. Fogle, J. W. Melvin, R. R. Haynes, V. L. Roberts, and N. M. Alem. Mechanical properties on cranial bone. J. Biomech. 3:495–511, 1970.

    Article  CAS  PubMed  Google Scholar 

  22. McKay, M. D., R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code (JSTOR Abstract). Technometrics 21(2):239–245, 1979.

    Article  Google Scholar 

  23. Melvin, J. W., D. H. Robbins, and V. L. Roberts. The mechanical properties of the diploë layer in the human skull in compression. Developments in Mechanics 5:811–818, 1969. Paper No. 05-0250.

  24. Pena, A., J. D. Pickard, D. Stiller, N. G. Harris, and M. U. Schuhmann. Brain tissue biomechanics in cortical contusion injury: a finite element analysis. Acta Neurochir. Suppl. 95:333–336, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Rasmussen, C. E., and C. K. I. Williams. Gaussian Processes for Machine Learning. Cambridge: MIT Press, 2006.

  26. Reimann, D. A., S. M. Hames, M. J. Flynn, and D. P. Fyhrie. A cone beam computed tomography system for true 3d imaging of specimens. Appl. Radiat. Isot. 48(10–12):1433–1436, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. Rho, J. Y., J. D. Currey, P. Zioupos, and G. M. Pharr. The anisotropic Young’s modulus of equine secondary osteones and interstitial bone determined by nanoindentation. J. Exp. Biol. 204:1775–1781, 2001.

    CAS  PubMed  Google Scholar 

  28. Robbins, D. H., and J. L. Wood. Determination of mechanical properties of the bones of the skull. Exp. Mech. 9(5):236–240, 1969.

    Article  Google Scholar 

  29. Sacks, J., S. B. Schiller, and W. J. Welch. Designs for computer experiments. Technometrics 31:41–47, 1989.

    Article  Google Scholar 

  30. Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer experiments. Stat. Sci. 4(4):409–423, 1989.

    Article  Google Scholar 

  31. Santner, T. J., B. J. Williams, and W. Notz. The design and analysis of computer experiments. New York: Springer Series in Statistics, Springer, 2003.

    Google Scholar 

  32. Untaroiu, C., K. Darvish, J. Crandall, B. Deng, and J. T. Wang. Characterization of the lower limb soft tissues in pedestrian finite element models. The 19th International Technical Conference on the Enhanced Safety of Vehicles. US Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, 2005.

  33. Untaroiu, C., J. Kerrigan, and J. Crandall. Material identification using successive response surface methodology, with application to a human femur subjected to three-point bending loading, SAE Technical Paper Number 2006-01-0063. Warrendale, PA, 2006.

  34. Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications. New York: Springer, 2003.

  35. Wood, J. L. Dynamic response of human cranial bone. J. Biomech. 4:1–12, 1971.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J. A finite element modeling of anterior lumbar spinal fusion, M.S. Thesis, Wayne State University, 1992.

Download references

Acknowledgments

This study is supported by the National 973 Program under Grant number 2010CB832705 and the National Science Fund for Distinguished Young Scholars (10725208), both funded through the Chinese government. The primary author of this manuscript is supported by a fellowship provided by the China Scholarship Council funded by the Ministry of Education of the People’s Republic of China and in part by the Bioengineering Center at Wayne State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to King H. Yang.

Additional information

Associate Editor Kyriacos A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, F., Han, X., Mao, H. et al. Application of Optimization Methodology and Specimen-Specific Finite Element Models for Investigating Material Properties of Rat Skull. Ann Biomed Eng 39, 85–95 (2011). https://doi.org/10.1007/s10439-010-0125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0125-0

Keywords

Navigation