Skip to main content
Log in

Computational Models of the Foot and Ankle for Pathomechanics and Clinical Applications: A Review

  • Computational Biomechanics for Patient-Specific Applications
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Complementary to experimental studies, computational biomechanics has become useful tool for the understanding of human foot biomechanics and pathomechanics. Its findings have been widely used for the evaluation of the effectiveness of surgical and conservative interventions. These models, however, were developed with a wide range of variations in terms of simplifications and assumptions on the representation of geometrical structures and material properties, as well as boundary and loading conditions. These variations may create differences in prediction accuracy, and restrict practical and clinical applications. This paper reviews the state-of-the-art technologies and challenges in computational model development, focusing on foot problem-specific models for the assessment of the effectiveness and accessibility of clinical treatments. The computational models have provided valuable biomechanical information for clinical applications but further investigations come with many challenges in terms of detailed and patient-specific models, accurate representations of tissue properties, and boundary and loading conditions. Multi-scale computational models are expected to be an efficient platform to fully address the biomechanical and biological concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Actis, R. L., L. B. Ventura, D. J. Lott, K. E. Smith, P. K. Commean, M. K. Hastings, and M. J. Mueller. Multi-plug insole design to reduce peak plantar pressure on the diabetic foot during walking. Med. Biol. Eng. Comput. 46:363–371, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Actis, R. L., L. B. Ventura, K. E. Smith, P. K. Commean, D. J. Lott, T. K. Pilgram, and M. J. Mueller. Numerical simulation of the plantar pressure distribution in the diabetic foot during the push-off stance. Med. Biol. Eng. Comput. 44:653–663, 2006.

    Article  PubMed  Google Scholar 

  3. Alonso-Vazquez, A., H. Lauge-Pedersen, L. Lidgren, and M. Taylor. Finite element analysis of the initial stability of ankle arthrodesis with internal fixation: flat cut versus intact joint contours. Clin. Biomech. 18:244–253, 2003.

    Article  Google Scholar 

  4. Alonso-Vazquez, A., H. Lauge-Pedersen, L. Lidgren, and M. Taylor. The effect of bone quality on the stability of ankle arthrodesis. A finite element study. Foot Ankle Int. 25:840–850, 2004.

    PubMed  Google Scholar 

  5. Alonso-Vazquez, A., H. Lauge-Pedersen, L. Lidgren, and M. Taylor. Initial stability of ankle arthrodesis with three-screw fixation. A finite element analysis. Clin. Biomech. 19:751–759, 2004.

    Article  Google Scholar 

  6. Arangio, G. A., K. L. Reinert, and E. P. Salathe. A biomechanical model of the effect of subtalar arthroereisis on the adult flexible flat foot. Clin. Biomech. 19:847–852, 2004.

    Article  Google Scholar 

  7. Barani, Z., M. Haghpanahi, and H. Katoozian. Three dimensional stress analysis of diabetic insole: a finite element approach. Technol. Health Care 13:185–192, 2005.

    PubMed  Google Scholar 

  8. Bayod, J., R. Becerro-de-Bengoa-Vallejo, M. E. Losa-Iglesias, and M. Doblare. Mechanical stress redistribution in the calcaneus after autologous bone harvesting. J. Biomech. 45:1219–1226, 2012.

    Article  PubMed  CAS  Google Scholar 

  9. Bayod, J., M. Losa-Iglesias, R. Becerro de Bengoa-Vallejo, J. C. Prados-Frutos, K. T. Jules, and M. Doblare. Advantages and drawbacks of proximal interphalangeal joint fusion versus flexor tendon transfer in the correction of hammer and claw toe deformity. A finite-element study. J. Biomech. Eng. 132:051002, 2010.

  10. Bayod, J., R. B. de Bengoa Vallejo, M. E. L. Iglesias, and M. Doblaré. Stress at the second metatarsal bone after correction of hammertoe and claw toe deformity: a finite element analysis using an anatomical model. J. Am. Podiatric Med. Assoc. 103:260–273, 2013.

  11. Bouguecha, A., N. Weigel, B. A. Behrens, C. Stukenborg-Colsman, and H. Waizy. Numerical simulation of strain-adaptive bone remodelling in the ankle joint. Biomed. Eng. Online 10:58, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brilakis, E., E. Kaselouris, F. Xypnitos, C. G. Provatidis, and N. Efstathopoulos. Effects of foot posture on fifth metatarsal fracture healing: a finite element study. J. Foot Ankle Surg. 51:720–728, 2012.

    Article  PubMed  Google Scholar 

  13. Chen, W. M., and P. V. S. Lee. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads. Comput. Methods Biomech. Biomed. Eng. 18:1582–1595, 2015.

    Article  Google Scholar 

  14. Chen, W. M., T. Lee, P. V. S. Lee, J. W. Lee, and S. J. Lee. Effects of internal stress concentrations in plantar soft-tissue—a preliminary three-dimensional finite element analysis. Med. Eng. Phys. 32:324–331, 2010.

    Article  PubMed  Google Scholar 

  15. Chen, W. M., J. Park, S. B. Park, V. P. W. Shim, and T. Lee. Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise—a 3D finite element analysis. J. Biomech. 45:1783–1789, 2012.

    Article  PubMed  Google Scholar 

  16. Cheung, J. T. M., K. N. An, and M. Zhang. Consequences of partial and total plantar fascia release: A finite element study. Foot Ankle Int. 27:125–132, 2006.

    PubMed  Google Scholar 

  17. Cheung, J. T. M., and B. M. Nigg. Clinical applications of computational simulation of foot and ankle. Sport-Orthopädie-Sport-Traumatologie-Sports Orthop. Traumatol. 23:264–271, 2008.

    Article  Google Scholar 

  18. Cheung, J. T. M., J. Yu, D. W.-C. Wong, and M. Zhang. Current methods in computer-aided engineering for footwear design. Footwear Sci. 1:31–46, 2009.

    Article  Google Scholar 

  19. Cheung, J. T. M., and M. Zhang. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Med. Eng. Phys. 30:269–277, 2008.

    Article  PubMed  Google Scholar 

  20. Cheung, J. T. M., M. Zhang, and K. N. An. Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. Clin. Biomech. 19:839–846, 2004.

    Article  Google Scholar 

  21. Cheung, J. T. M., M. Zhang, A. K. Leung, and Y. B. Fan. Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J. Biomech. 38:1045–1054, 2005.

    Article  PubMed  Google Scholar 

  22. Damsgaard, M., J. Rasmussen, S. T. Christensen, E. Surma, and M. de Zee. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pract. Theory 14:1100–1111, 2006.

    Article  Google Scholar 

  23. Elliot, B. J., D. Gundapaneni, and T. Goswami. Finite element analysis of stress and wear characterization in total ankle replacements. J. Mech. Behav. Biomed. Mater. 34:134–145, 2014.

    Article  Google Scholar 

  24. Er, M. S., O. Verim, L. Altinel, and S. Tasgetiren. Three-dimensional finite element analysis used to compare six different methods of syndesmosis fixation with 3.5-or 4.5-mm titanium screws a biomechanical study. J. Am. Podiatr. Med. Assoc. 103:174–180, 2013.

    Article  PubMed  Google Scholar 

  25. Erdemir, A., J. J. Saucerman, D. Lemmon, B. Loppnow, B. Turso, J. S. Ulbrecht, and P. R. Cavanagh. Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models. J. Biomech. 38:1798–1806, 2005.

    Article  PubMed  Google Scholar 

  26. Erdemir, A., M. L. Viveiros, J. S. Ulbrecht, and P. R. Cavanagh. An inverse finite-element model of heel-pad indentation. J. Biomech. 39:1279–1286, 2006.

    Article  PubMed  Google Scholar 

  27. Flavin, R., T. Halpin, R. O’Sullivan, D. FitzPatrick, A. Ivankovic, and M. Stephens. A finite-element analysis study of the metatarsophalangeal joint of the hallux rigidus. J. Bone Joint Surg. Brit. 90:1334–1340, 2008.

    Article  PubMed  CAS  Google Scholar 

  28. GarcÃa-Aznar, J., J. Bayod, A. Rosas, R. Larrainzar, R. GarcÃa-BÃǵgalo, M. DoblarÃĐ, and L. Llanos. Load transfer mechanism for different metatarsal geometries: a finite element study. J. Biomech. Eng. 131:021011, 2009.

    Article  Google Scholar 

  29. García-González, A., J. Bayod, J. C. Prados-Frutos, M. Losa-Iglesias, K. T. Jules, R. B. de Bengoa-Vallejo, and M. Doblaré. Finite-element simulation of flexor digitorum longus or flexor digitorum brevis tendon transfer for the treatment of claw toe deformity. J. Biomech. 42:1697–1704, 2009.

    Article  PubMed  Google Scholar 

  30. Goske, S., A. Erdemir, M. Petre, S. Budhabhatti, and P. R. Cavanagh. Reduction of plantar heel pressures: Insole design using finite element analysis. J. Biomech. 39:2363–2370, 2006.

    Article  PubMed  Google Scholar 

  31. Gu, Y., M. Rong, Z. Li, M. Lake, and G. Ruan. Finite element analysis of deep transverse metatarsal ligaments mechanical response during landing. In: Advanced Materials Research Trans Tech Publ, 2012, pp. 2558–2561.

  32. Guiotto, A., Z. Sawacha, G. Guarneri, A. Avogaro, and C. Cobelli. 3D finite element model of the diabetic neuropathic foot: A gait analysis driven approach. J. Biomech. 47:3064–3071, 2014.

    Article  PubMed  Google Scholar 

  33. Halloran, J. P., S. Sibole, C. C. van Donkelaar, M. C. van Turnhout, C. W. J. Oomens, J. A. Weiss, F. Guilak, and A. Erdemir. Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models. Ann. Biomed. Eng. 40:2456–2474, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. He, K., S. Fu, S. Liu, Z. F. Wang, and D. Jin. Comparisons in finite element analysis of minimally invasive, locking, and non-locking plates systems used in treating calcaneal fractures of Sanders type II and type III. Chin. Med. J. 127:3894–3901, 2014.

    PubMed  Google Scholar 

  35. Hsu, Y.-C., Y.-W. Gung, S.-L. Shih, C.-K. Feng, S.-H. Wei, C.-H. Yu, and C.-S. Chen. Using an optimization approach to design an insole for lowering plantar fascia stress—a finite element study. Ann. Biomed. Eng. 36:1345–1352, 2008.

    Article  PubMed  Google Scholar 

  36. Iaquinto, J. M., and J. S. Wayne. Effects of surgical correction for the treatment of adult acquired flatfoot deformity: a computational investigation. J. Orthop. Res. 29:1047–1054, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Isvilanonda, V., E. Dengler, J. M. Iaquinto, B. J. Sangeorzan, and W. R. Ledoux. Finite element analysis of the foot: Model validation and comparison between two common treatments of the clawed hallux deformity. Clin. Biomech. 27:837–844, 2012.

    Article  Google Scholar 

  38. Lee, J. Y., and Y. S. Lee. Optimal double screw configuration for subtalar arthrodesis: a finite element analysis. Knee Surg. Sports Traumatol. Arthrosc. 19:842–849, 2011.

    Article  PubMed  Google Scholar 

  39. Liu, Q., G. Zhao, B. Yu, J. Ma, Z. Li, and K. Zhang. Effects of inferior tibiofibular syndesmosis injury and screw stabilization on motion of the ankle: a finite element study. Knee Surg. Sports Traumatol. Arthrosc. 2014. doi:10.1007/s00167-014-3320-y.

    Google Scholar 

  40. Liu, Q. H., K. Zhang, Y. Zhuang, Z. Li, B. Yu, and G. X. Pei. Analysis of the stress and displacement distribution of inferior tibiofibular syndesmosis injuries repaired with screw fixation: a finite element study. PLoS ONE 8:e80236, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Matzaroglou, C., P. Bougas, E. Panagiotopoulos, A. Saridis, M. Karanikolas, and D. Kouzoudis. Ninety-degree chevron osteotomy for correction of hallux valgus deformity: clinical data and finite element analysis. Open Orthop. J. 4:152–156, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Niu, W., T. Tang, M. Zhang, C. Jiang, and Y. Fan. An in vitro and finite element study of load redistribution in the midfoot. Sci. China Life Sci. 57:1191–1196, 2014.

    Article  PubMed  Google Scholar 

  43. Ozen, M., O. Sayman, and H. Havitcioglu. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex. Acta Bioeng. Biomech. 15:19–27, 2013.

    PubMed  Google Scholar 

  44. Pang, Q. J., X. Yu, and Z. H. Guo. The sustentaculum tali screw fixation for the treatment of Sanders type II calcaneal fracture: A finite element analysis. Pak. J. Med. Sci. 30:1099–1103, 2014.

    PubMed  PubMed Central  Google Scholar 

  45. Qian, Z. H., L. Ren, L. Q. Ren, and A. Boonpratatong. A three-dimensional finite element musculoskeletal model of the human foot complex. 6th World Congress of Biomechanics (Wcb 2010), Pts 1-3 31, 2010, pp. 297–300.

  46. Ramlee, M. H., M. R. A. Kadir, M. R. Murali, and T. Kamarul. Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation-A finite element analysis. Med. Eng. Phys. 36:1358–1366, 2014.

    Article  PubMed  Google Scholar 

  47. Reggiani, B., A. Leardini, F. Corazza, and M. Taylor. Finite element analysis of a total ankle replacement during the stance phase of gait. J. Biomech. 39:1435–1443, 2006.

    Article  PubMed  CAS  Google Scholar 

  48. Rohr, E. S., J. E. Johnson, L. Zhao, and G. F. Harris. Three-dimensional finite element analysis of the fifth metatarsal Jone fracture. In: Foot and Ankle Motion Analysis, edited by G. F. Harris, P. A. Smith and R. M. Marks. CRC Press, 2008, pp. 347–362.

  49. Sanders, R., P. Fortin, T. DiPasquale, and A. Walling. Operative treatment in 120 displaced intraarticular calcaneal fractures results using a prognostic computed tomography scan classification. Clin. Orthop. Relat. Res. 290:87–95, 1993.

    PubMed  Google Scholar 

  50. Spratley, E. M., E. A. Matheis, C. W. Hayes, R. S. Adelaar, and J. S. Wayne. Validation of a population of patient-specific adult acquired flatfoot deformity models. J. Orthop. Res. 31:1861–1868, 2013.

    Article  PubMed  Google Scholar 

  51. Spyrou, L. A., and N. Aravas. Muscle-driven finite element simulation of human foot movements. Comput. Methods Biomech. Biomed. Eng. 15:925–934, 2012.

    Article  CAS  Google Scholar 

  52. Tao, K., W.-T. Ji, D.-M. Wang, C.-T. Wang, and X. Wang. Relative contributions of plantar fascia and ligaments on the arch static stability: a finite element study. Biomedizinische Technik/Biomed. Eng. 55:265–271, 2010.

    Article  Google Scholar 

  53. Terrier, A., X. Larrea, J. Guerdat, and X. Crevoisier. Development and experimental validation of a finite element model of total ankle replacement. J. Biomech. 47:742–745, 2014.

    Article  PubMed  Google Scholar 

  54. Trabelsi, N., C. Milgrom, and Z. Yosibash. Patient-specific FE analyses of metatarsal bones with inhomogeneous isotropic material properties. J. Mech. Behav. Biomed. Mater. 29:177–189, 2014.

    Article  PubMed  Google Scholar 

  55. Wang, Y., Z. Y. Li, and M. Zhang. Biomechanical study of tarsometatarsal joint fusion using finite element analysis. Med. Eng. Phys. 36:1394–1400, 2014.

    Article  PubMed  Google Scholar 

  56. Wang, Z., K. Imai, M. Kido, K. Ikoma and S. Hirai. A finite element model of flatfoot (Pes Planus) for improving surgical plan. IEEE, 2014, pp. 844–847.

  57. Wong, D. W.-C., M. Zhang, and A. K.-L. Leung. First ray model comparing normal and hallux valgus feet. In: Computational biomechanics of musculoskeletal system. CRC Press, 2014, pp. 49–60.

  58. Wong, D., M. Zhang, J. Yu, and A. Leung. Biomechanics of first ray hypermobility: an investigation on joint force during walking using finite element analysis. Med. Eng. Phys. 36:1388–1393, 2014.

    Article  PubMed  Google Scholar 

  59. Wu, L. Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of Virtual Chinese Human after plantar ligamentous structure failures. Clin. Biomech. 22:221–229, 2007.

    Article  Google Scholar 

  60. Xu, C., M. Y. Zhang, G. H. Lei, C. Zhang, S. G. Gao, W. Ting, and K. H. Li. Biomechanical evaluation of tenodesis reconstruction in ankle with deltoid ligament deficiency: a finite element analysis. Knee Surg. Sports Traumatol. Arthrosc. 20:1854–1862, 2012.

    Article  PubMed  Google Scholar 

  61. Yu, J., J. T. M. Cheung, Y. B. Fan, Y. Zhang, A. K. L. Leung, and M. Zhang. Development of a finite element model of female foot for high-heeled shoe design. Clin. Biomech. 23:S31–S38, 2008.

    Article  Google Scholar 

  62. Yu, J., D. W.-C. Wong, and M. Zhang. Dynamic foot model for impact investigation. In: Computational Biomechanics of the Musculoskeletal System 2014, pp. 61–71.

  63. Zhang, M. Y., C. Xu, and K. H. Li. Finite element analysis of nonanatomic tenodesis reconstruction methods of combined anterior talofibular ligament and calcaneofibular ligament deficiency. Foot Ankle Int. 32:1000–1008, 2011.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by Hong Kong Research Grant Council GRF (PolyU5326/11E, PolyU152216/14E) and NSFC (11272273, 11120101001).

Conflict of Interest

None of the authors will be benefited from any commercial group with this work, nor was there any financial support received or will be received by any of the authors for publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Additional information

Associate Editor Karol Miller oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wong, D.WC. & Zhang, M. Computational Models of the Foot and Ankle for Pathomechanics and Clinical Applications: A Review. Ann Biomed Eng 44, 213–221 (2016). https://doi.org/10.1007/s10439-015-1359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1359-7

Keywords

Navigation