Skip to main content
Log in

Biomechanical evaluation of tenodesis reconstruction in ankle with deltoid ligament deficiency: a finite element analysis

  • Ankle
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Isolated deltoid ligament injuries are relatively uncommon but can be a significant source of pain and disability. Several approaches to deltoid reconstruction have been reported. However, there is no previous comparative study of Wiltberger, Deland, Kitaoka and Hintermann procedures with respect to biomechanical characteristics such as kinematics, ligaments and grafts stresses using finite element analysis. The purpose of this study was to evaluate the biomechanical results of those deltoid ligament reconstructions using finite element analysis.

Methods

A three-dimensional finite element model of the ankle including six bony structures, cartilage and nine principal ligaments surrounding the ankle joint complex was developed and validated. In addition to the intact model, superficial deltoid-deficient, deltoid-deficient, Wiltberger reconstruction, Deland reconstruction, Kitaoka reconstruction and Hintermann reconstruction models were simulated. Then, the forces in the ligaments and grafts and the kinematics of talus and calcaneus were predicted for an eversional or external torque through the range of ankle flexion.

Results

No reconstructions could completely restore the values for ankle flexibility and the stresses of the lateral ligaments to normality. The Kitaoka procedure was the most effective technique in eliminating external rotation displacement. The Deland procedure restored better the talar tilt than the other three reconstructions.

Conclusion

This study showed that Kitaoka and Deland procedures have advantages with regard to rotational stabilities as well as ligaments stress in comparison with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alonso-Vazquez A, Lauge-Pedersen H, Lidgren L, Taylor M (2004) Initial stability of ankle arthrodesis with three-screw fixation. A finite element analysis. Clin Biomech 19(7):751–759

    Article  Google Scholar 

  2. Anderson DD, Goldsworthy JK, Shivanna K, Grosland NM, Pedersen DR, Thomas TP, Tochigi Y, Marsh JL, Brown TD (2006) Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity. Biomech Model Mechanobiol 5(2–3):82–89

    Article  PubMed  Google Scholar 

  3. Bahr R, Pena F, Shine J, Lew WD, Lindquist C, Tyrdal S, Engebretsen L (1997) Mechanics of the anterior drawer and talar tilt tests. A cadaveric study of lateral ligament injuries of the ankle. Acta Orthop Scand 68(5):435–441

    Article  PubMed  CAS  Google Scholar 

  4. Bedi A, Kawamura S, Ying L, Rodeo SA (2009) Differences in tendon graft healing between the intra-articular and extra-articular ends of a bone tunnel. HSS J 5(1):51–57

    Article  PubMed  Google Scholar 

  5. Brostrom L (1965) Sprained ankles. 3. Clinical observations in recent ligament ruptures. Acta Chir Scand 130(6):560–569

    PubMed  CAS  Google Scholar 

  6. Cheung JT, Zhang M, Leung AK, Fan YB (2005) Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J Biomech 38(5):1045–1054

    Article  PubMed  Google Scholar 

  7. Deland JT, de Asla RJ, Segal A (2004) Reconstruction of the chronically failed deltoid ligament: a new technique. Foot Ankle Int 25(11):795–799

    PubMed  Google Scholar 

  8. Eberhardt AW, Lewis JL, Keer LM (1991) Contact of layered elastic spheres as a model of joint contact: effect of tangential load and friction. J Biomech Eng 113(1):107–108

    Article  PubMed  CAS  Google Scholar 

  9. Ellis SJ, Williams BR, Wagshul AD, Pavlov H, Deland JT (2010) Deltoid ligament reconstruction with peroneus longus autograft in flatfoot deformity. Foot Ankle Int 31(9):781–789

    Article  PubMed  Google Scholar 

  10. Fujii T, Kitaoka HB, Watanabe K, Luo ZP, An KN (2006) Comparison of modified Brostrom and Evans procedures in simulated lateral ankle injury. Med Sci Sports Exerc 38(6):1025–1031

    Article  PubMed  Google Scholar 

  11. Funk JR, Hall GW, Crandall JR, Pilkey WD (2000) Linear and quasi-linear viscoelastic characterization of ankle ligaments. J Biomech Eng 122(1):15–22

    Article  PubMed  CAS  Google Scholar 

  12. Gao J, Messner K, Ralphs JR, Benjamin M (1996) An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol (Berl) 194(4):399–406

    Article  CAS  Google Scholar 

  13. Garcia-Aznar JM, Kuiper JH, Gomez-Benito MJ, Doblare M, Richardson JB (2007) Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J Biomech 40(7):1467–1476

    Article  PubMed  CAS  Google Scholar 

  14. Gefen A (2003) Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med Eng Phys 25(6):491–499

    Article  PubMed  Google Scholar 

  15. Golano P, Vega J, de Leeuw PA, Malagelada F, Manzanares MC, Gotzens V, van Dijk CN (2010) Anatomy of the ankle ligaments: a pictorial essay. Knee Surg Sports Traumatol Arthrosc 18(5):557–569

    Article  PubMed  Google Scholar 

  16. Gomez-Benito MJ, Garcia-Aznar JM, Kuiper JH, Doblare M (2005) Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol 235(1):105–119

    Article  PubMed  CAS  Google Scholar 

  17. Haddad SL, Dedhia S, Ren Y, Rotstein J, Zhang LQ (2011) Deltoid ligament reconstruction: a novel technique with biomechanical analysis. Foot Ankle Int 31(7):639–651

    Article  Google Scholar 

  18. Harper MC (1988) The deltoid ligament. An evaluation of need for surgical repair. Clin Orthop Relat Res 226:156–168

    PubMed  Google Scholar 

  19. Harris EH, Walker LB Jr, Bass BR (1966) Stress-strain studies in cadaveric human tendon and an anomaly in the Young’s modulus thereof. Med Biol Eng 4(3):253–259

    Article  PubMed  CAS  Google Scholar 

  20. Hintermann B, Sommer C, Nigg BM (1995) Influence of ligament transection on tibial and calcaneal rotation with loading and dorsi-plantarflexion. Foot Ankle Int 16(9):567–571

    PubMed  CAS  Google Scholar 

  21. Hintermann B, Valderrabano V, Kundert HP (1999) Lengthening of the lateral column and reconstruction of the medial soft tissue for treatment of acquired flatfoot deformity associated with insufficiency of the posterior tibial tendon. Foot Ankle Int 20(10):622–629

    PubMed  CAS  Google Scholar 

  22. Horibe S, Shino K, Nagano J, Nakamura H, Tanaka M, Ono K (1990) Replacing the medial collateral ligament with an allogenic tendon graft. An experimental canine study. J Bone Joint Surg Br 72(6):1044–1049

    PubMed  CAS  Google Scholar 

  23. Imhauser CW, Siegler S, Udupa JK, Toy JR (2008) Subject-specific models of the hindfoot reveal a relationship between morphology and passive mechanical properties. J Biomech 41(6):1341–1349

    Article  PubMed  Google Scholar 

  24. Jeng CL, Bluman EM, Myerson MS (2011) Minimally invasive deltoid ligament reconstruction for stage IV flatfoot deformity. Foot Ankle Int 32(1):21–30

    Article  PubMed  Google Scholar 

  25. Kitaoka HB, Luo ZP, An KN (1998) Reconstruction operations for acquired flatfoot: biomechanical evaluation. Foot Ankle Int 19(4):203–207

    PubMed  CAS  Google Scholar 

  26. Lauge-Hansen N (1950) Fractures of the ankle, II: combined experimental surgical and experimental roentgenologic investigation. Arch Surg 60:957–985

    Article  PubMed  CAS  Google Scholar 

  27. Leardini A, O’Connor JJ, Catani F, Giannini S (2000) The role of the passive structures in the mobility and stability of the human ankle joint: a literature review. Foot Ankle Int 21(7):602–615

    PubMed  CAS  Google Scholar 

  28. Lee KT, Lee JI, Sung KS, Kim JY, Kim ES, Lee SH, Wang JH (2008) Biomechanical evaluation against calcaneofibular ligament repair in the Brostrom procedure: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 16(8):781–786

    Article  PubMed  Google Scholar 

  29. Magee DJ (2007) Orthopedic physical assessment, 5th edn. Saunders, Philadelphia, pp 688–689

    Google Scholar 

  30. Mow VC, Proctor CS, Kelly MA (1989) Biomechanics of articular cartilage. In: Nordin M, Frankle V (eds) Basic biomechanics of the musculoskeletal system. Lea and Febiger, Malvern PA, pp 31–57

    Google Scholar 

  31. Nakamura N, Horibe S, Maeda A, Toritsuka Y, Matsumoto N, Adachi E, Shino K, Ochi T (1996) Progression of cellular repopulation and collagen synthesis in fresh-frozen allograft tendons. Wound Repair Regen 4(1):87–92

    Article  PubMed  CAS  Google Scholar 

  32. Nielsen JK, Saltzman CL, Brown TD (2005) Determination of ankle external fixation stiffness by expedited interactive finite element analysis. J Orthop Res 23(6):1321–1328

    PubMed  Google Scholar 

  33. Pearsall AW, Hollis JM, Russell GV Jr, Scheer Z (2003) A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee. Arthroscopy 19(10):1091–1096

    Article  PubMed  Google Scholar 

  34. Pena E, Calvo B, Martinez MA, Palanca D, Doblare M (2006) Influence of the tunnel angle in ACL reconstructions on the biomechanics of the knee joint. Clin Biomech 21(5):508–516

    Article  CAS  Google Scholar 

  35. Ramaniraka NA, Terrier A, Theumann N, Siegrist O (2005) Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clin Biomech 20(4):434–442

    Article  CAS  Google Scholar 

  36. Rasmussen O, Kromann-Andersen C, Boe S (1983) Deltoid ligament. Functional analysis of the medial collateral ligamentous apparatus of the ankle joint. Acta Orthop Scand 54(1):36–44

    Article  PubMed  CAS  Google Scholar 

  37. Reggiani B, Leardini A, Corazza F, Taylor M (2006) Finite element analysis of a total ankle replacement during the stance phase of gait. J Biomech 39(8):1435–1443

    Article  PubMed  CAS  Google Scholar 

  38. Sarrafian S (1993) Anatomy of the foot and ankle. Descriptive, topographic, functional, 2 edn edn. Lippincott, Philadelphia, pp 159–217

    Google Scholar 

  39. Schechtman H, Bader DL (1994) Dynamic characterization of human tendons. Proc Inst Mech Eng H 208(4):241–248

    Article  Google Scholar 

  40. Schechtman H, Bader DL (1997) In vitro fatigue of human tendons. J Biomech 30(8):829–835

    Article  PubMed  CAS  Google Scholar 

  41. Sclafani SJ (1985) Ligamentous injury of the lower tibiofibular syndesmosis: radiographic evidence. Radiology 156(1):21–27

    PubMed  CAS  Google Scholar 

  42. Shino K, Kawasaki T, Hirose H, Gotoh I, Inoue M, Ono K (1984) Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog. J Bone Joint Surg Br 66(5):672–681

    Google Scholar 

  43. Siegler S, Block J, Schneck CD (1988) The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle 8(5):234–242

    PubMed  CAS  Google Scholar 

  44. Stolk J, Janssen D, Huiskes R, Verdonschot N (2007) Finite element-based preclinical testing of cemented total hip implants. Clin Orthop Relat Res 456:138–147

    Article  PubMed  Google Scholar 

  45. Tohyama H, Beynnon BD, Renstrom PA, Theis MJ, Fleming BC, Pope MH (1995) Biomechanical analysis of the ankle anterior drawer test for anterior talofibular ligament injuries. J Orthop Res 13(4):609–614

    Article  PubMed  CAS  Google Scholar 

  46. van Strien T, der Zwaag E, Kaptein B, van Erkel A, Valstar E, Nelissen R (2009) Computer assisted versus conventional cemented total knee prostheses alignment accuracy and micromotion of the tibial component. Int Orthop 33(5):1255–1261

    Article  PubMed  Google Scholar 

  47. Veres GV, Gordon L, Carter JN (2004) What image information is important in silhouette-based gait recognition? In: IEEE conference, computer vision and pattern recognition, pp 776–782

  48. Wilson W, van Donkelaar CC, van Rietbergen R, Huiskes R (2005) The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med Eng Phys 27(10):810–826

    Article  PubMed  CAS  Google Scholar 

  49. Wiltberger BR, Malloy TM (1972) A new method for reconstructing the deltoid ligament of the ankle. Orthop Rev 1:37–41

    Google Scholar 

  50. Yamakado K, Kitaoka K, Yamada H, Hashiba K, Nakamura R, Tomita K (2002) The influence of mechanical stress on graft healing in a bone tunnel. Arthroscopy 18(1):82–90

    Article  PubMed  Google Scholar 

  51. Yde J (1980) The Lauge Hansen classification of malleolar fractures. Acta Orthop Scand 51(1):181–192

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Hua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Zhang, MY., Lei, GH. et al. Biomechanical evaluation of tenodesis reconstruction in ankle with deltoid ligament deficiency: a finite element analysis. Knee Surg Sports Traumatol Arthrosc 20, 1854–1862 (2012). https://doi.org/10.1007/s00167-011-1762-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1762-z

Keywords

Navigation