Skip to main content

Advertisement

Log in

Right Ventricular Inefficiency in Repaired Tetralogy of Fallot: Proof of Concept for Energy Calculations From Cardiac MRI Data

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Repaired tetralogy of Fallot (rTOF) patients develop right ventricular (RV) dilatation and dysfunction. To prevent their demise, pulmonary valve replacement is necessary, though appropriate timing for it is challenged by a paucity of reliable diagnostic parameters. In this pilot study, we hypothesized that stroke work (SW) and energy calculations would delineate the inefficiency of RV performance in rTOF. RV SW was calculated for both an rTOF and a normal subject by utilizing RV pressure and volume measurements obtained during cardiac catheterization and MRI studies. Energy transfer rate and ratio were computed at the main pulmonary artery (PA). Compared to the normal RV, the rTOF RV had higher operating pressure, lower computed SW (0.078 J vs. 0.115 J for normal), and higher negative energy transfer at the PA (0.044 J vs. 0.002 J for normal). Furthermore, the energy transfer ratio was nearly twice as high for the normal RV (1.06) as for the rTOF RV (0.56). RV SW and energy transfer ratio delineate important operational efficiency differences in blood flow from the RV to the PA between rTOF and normal subjects. Our pilot data suggest that the rTOF RV is significantly less efficient than normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6

Similar content being viewed by others

References

  1. Akins, C. W., B. Travis, and A. P. Yoganathan. Energy loss for evaluating heart valve performance. J. Thorac. Cardiovasc. Surg. 136:820–833, 2008.

    Article  PubMed  Google Scholar 

  2. Anderson, R. H., and P. M. Weinberg. The clinical anatomy of tetralogy of fallot. Cardiol. Young 15(Suppl 1):38–47, 2005.

    Article  PubMed  Google Scholar 

  3. Banerjee, R. K., L. H. Back, M. R. Back, and Y. I. Cho. Physiological flow simulation in residual human stenoses after coronary angioplasty. J. Biomech. Eng. 122:310–320, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Bazilevs, Y., M.-C. Hsu, D. J. Benson, S. Sankaran, and A. L. Marsden. Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput. Mech. 45:77–89, 2009.

    Article  Google Scholar 

  5. Bove, E. L., M. R. de Leval, F. Migliavacca, R. Balossino, and G. Dubini. Toward optimal hemodynamics: computer modeling of the Fontan circuit. Pediatr. Cardiol. 28:477–481, 2007.

    Article  CAS  PubMed  Google Scholar 

  6. Burkhoff, D., I. Mirsky, and H. Suga. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. 289:H501–H512, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Chatzimavroudis, G. P., J. N. Oshinski, R. H. Franch, P. G. Walker, A. P. Yoganathan, and R. I. Pettigrew. Evaluation of the precision of magnetic resonance phase velocity mapping for blood flow measurements. J. Cardiovasc. Magn. Reson. 3:11–19, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Chern, M. J., M. T. Wu, and H. L. Wang. Numerical investigation of regurgitation phenomena in pulmonary arteries of Tetralogy of Fallot patients after repair. J. Biomech. 41:3002–3009, 2008.

    Article  PubMed  Google Scholar 

  9. d’Udekem, Y., C. Ovaert, F. Grandjean, V. Gerin, M. Cailteux, P. Shango-Lody, A. Vliers, T. Sluysmans, A. Robert, and J. Rubay. Tetralogy of Fallot: transannular and right ventricular patching equally affect late functional status. Circulation 102:III116–III122, 2000.

    PubMed  Google Scholar 

  10. Dasi, L. P., R. Krishnankuttyrema, H. D. Kitajima, K. Pekkan, K. S. Sundareswaran, M. Fogel, S. Sharma, K. Whitehead, K. Kanter, and A. P. Yoganathan. Fontan hemodynamics: importance of pulmonary artery diameter. J. Thorac. Cardiovasc. Surg. 137:560–564, 2009.

    Article  PubMed  Google Scholar 

  11. Dasi, L. P., K. Pekkan, D. de Zelicourt, K. S. Sundareswaran, R. Krishnankutty, P. J. Delnido, and A. P. Yoganathan. Hemodynamic energy dissipation in the cardiovascular system: generalized theoretical analysis on disease states. Ann. Biomed. Eng. 37:661–673, 2009.

    Article  PubMed  Google Scholar 

  12. Dasi, L. P., K. Pekkan, H. D. Katajima, and A. P. Yoganathan. Functional analysis of Fontan energy dissipation. J. Biomech. 41:2246–2252, 2008.

    Article  PubMed  Google Scholar 

  13. Figueroa, C. A., I. E. Vignon-Clementel, K. C. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blow flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195:5685–5706, 2006.

    Article  Google Scholar 

  14. Fogel, M. A., M. T. Donofrio, C. Ramaciotti, A. M. Hubbard, and P. M. Weinberg. Magnetic resonance and echocardiographic imaging of pulmonary artery size throughout stages of Fontan reconstruction. Circulation 90:2927–2936, 1994.

    CAS  PubMed  Google Scholar 

  15. Fogel, M. A., and J. Rychik. Right ventricular function in congenital heart disease: pressure and volume overload lesions. Prog. Cardiovasc. Dis. 40:343–356, 1998.

    Article  CAS  PubMed  Google Scholar 

  16. Funamoto, K., Y. Suzuki, T. Hayase, T. Kosugi, and H. Isoda. Numerical validation of MR-measurement-integrated simulation of blood flow in a cerebral aneurysm. Ann. Biomed. Eng. 37:1105–1116, 2009.

    Article  PubMed  Google Scholar 

  17. Grigioni, M., G. D’Avenio, A. Amodeo, and R. M. Di Donato. Power dissipation associated with surgical operations’ hemodynamics: critical issues and application to the total cavopulmonary connection. J. Biomech. 39:1583–1594, 2006.

    Article  PubMed  Google Scholar 

  18. Harrild, D. M., C. I. Berul, F. Cecchin, T. Geva, K. Gauvreau, F. Pigula, and E. P. Walsh. Pulmonary valve replacement in tetralogy of Fallot: impact on survival and ventricular tachycardia. Circulation 119:445–451, 2009.

    Article  PubMed  Google Scholar 

  19. Hazekamp, M. G., M. M. Kurvers, P. H. Schoof, H. W. Vliegen, B. M. Mulder, A. A. Roest, J. Ottenkamp, and R. A. Dion. Pulmonary valve insertion late after repair of Fallot’s tetralogy. Eur. J. Cardiothorac. Surg. 19:667–670, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Johansson, B., S. V. Babu-Narayan, and P. J. Kilner. The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping. J. Cardiovasc. Magn. Reson. 11:1, 2009.

    Article  PubMed  Google Scholar 

  21. Knauth, A. L., K. Gauvreau, A. J. Powell, M. J. Landzberg, E. P. Walsh, J. E. Lock, P. J. del Nido, and T. Geva. Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair. Heart 94:211–216, 2008.

    Article  CAS  PubMed  Google Scholar 

  22. Laffon, E., V. Bernard, M. Montaudon, R. Marthan, J. L. Barat, and F. Laurent. Tuning of pulmonary arterial circulation evidenced by MR phase mapping in healthy volunteers. J. Appl. Physiol. 90:469–474, 2001.

    CAS  PubMed  Google Scholar 

  23. Liu, Y., K. Pekkan, S. C. Jones, and A. P. Yoganathan. The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary connection. J. Biomech. Eng. 126:594–603, 2004.

    Article  PubMed  Google Scholar 

  24. Marsden, A. L., V. M. Reddy, S. C. Shadden, F. P. Chan, C. A. Taylor, and J. A. Feinstein. A new multiparameter approach to computational simulation for Fontan assessment and redesign. Congenit. Heart Dis. 5:104–117, 2010.

    Article  PubMed  Google Scholar 

  25. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. De Cobelli, A. Del Maschio, F. M. Montevecchi, and A. Redaelli. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 37:516–531, 2009.

    Article  PubMed  Google Scholar 

  26. Oechslin, E. N., D. A. Harrison, L. Harris, E. Downar, G. D. Webb, S. S. Siu, and W. G. Williams. Reoperation in adults with repair of tetralogy of fallot: indications and outcomes. J. Thorac. Cardiovasc. Surg. 118:245–251, 1999.

    Article  CAS  PubMed  Google Scholar 

  27. Owen, A. R., and M. A. Gatzoulis. Tetralogy of fallot: late outcome after repair and surgical implications. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 3:216–226, 2000.

    PubMed  Google Scholar 

  28. Pohost, G. M., L. Hung, and M. Doyle. Clinical use of cardiovascular magnetic resonance. Circulation 108:647–653, 2003.

    Article  PubMed  Google Scholar 

  29. Redington, A. N., H. H. Gray, M. E. Hodson, M. L. Rigby, and P. J. Oldershaw. Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements. Br. Heart J. 59:23–30, 1988.

    Article  CAS  PubMed  Google Scholar 

  30. Redington, A. N., M. L. Rigby, E. A. Shinebourne, and P. J. Oldershaw. Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified. Br. Heart J. 63:45–49, 1990.

    Article  CAS  PubMed  Google Scholar 

  31. Rosenthal, A. Adults with tetralogy of fallot—repaired, yes; cured, no. N. Engl. J. Med. 329:655–656, 1993.

    Article  CAS  PubMed  Google Scholar 

  32. Schipke, J. D., J. Alexander, Jr., Y. Harasawa, R. Schulz, and D. Burkhoff. Interrelation between end-systolic pressure-volume and pressure-wall thickness relations. Am. J. Physiol. 255:H679–H684, 1988.

    CAS  PubMed  Google Scholar 

  33. Sievers, B., B. Brandts, J. C. Moon, D. J. Pennell, and H. J. Trappe. Cardiovascular magnetic resonance of asymptomatic myocardial infarction. Int. J. Cardiol. 93:79–80, 2004.

    Article  PubMed  Google Scholar 

  34. Soerensen, D. D., K. Pekkan, K. S. Sundareswaran, and A. P. Yoganathan. New power loss optimized Fontan connection evaluated by calculation of power loss using high resolution PC-MRI and CFD. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2:1144–1147, 2004.

    CAS  PubMed  Google Scholar 

  35. Spilker, R. L., J. A. Feinstein, D. W. Parker, V. M. Reddy, and C. A. Taylor. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35:546–559, 2007.

    Article  PubMed  Google Scholar 

  36. Sundareswaran, K. S., K. R. Kanter, H. D. Kitajima, R. Krishnankutty, J. F. Sabatier, W. J. Parks, S. Sharma, A. P. Yoganathan, and M. Fogel. Impaired power output and cardiac index with hypoplastic left heart syndrome: a magnetic resonance imaging study. Ann. Thorac. Surg. 82:1267–1275, 2006; (discussion 1275–1267).

    Article  PubMed  Google Scholar 

  37. Therrien, J., S. C. Siu, P. R. McLaughlin, P. P. Liu, W. G. Williams, and G. D. Webb. Pulmonary valve replacement in adults late after repair of tetralogy of fallot: are we operating too late? J. Am. Coll. Cardiol. 36:1670–1675, 2000.

    Article  CAS  PubMed  Google Scholar 

  38. Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116:I165–I171, 2007.

    Article  PubMed  Google Scholar 

  39. Wong, K. K., R. M. Kelso, S. G. Worthley, P. Sanders, J. Mazumdar, and D. Abbott. Cardiac flow analysis applied to phase contrast magnetic resonance imaging of the heart. Ann. Biomed. Eng. 37:1495–1515, 2009.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Gottliebson.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Appendix

Appendix

RV SW Computation

The Fourier series of the co-registered and synchronized RV pressure and volume curves (refer to the “Methods” section on co-registration of the catheterization and the CMR data) were sampled at a series of closely spaced consecutive time points, t 1, t 2,… ,t n , over one cardiac period, T, progressing from t = 0 s to t = T s. Thus, the P–V loop points evaluated at the sampled time points, t 1, t 2,… ,t n are (p 1, V 1), (p 2, V 2),…,(p n , V n ).

The SW given by Eq. 1, which is the area enclosed by the P–V loop, is computed by straightforward application of Gauss theorem, reducing Eq. 1 to

$$ {\text{SW}} = \, \oint\limits_{C} {pdV} = \frac{1}{2}\oint\limits_{C} {\left( {pdV - Vdp} \right)} , $$
(6)

a cyclic integral over the closed path, C, and then reducing the right-hand side of Eq. 6 to a summation over the closed path formed by the sampled P–V loop points, (p 1, V 1), (p 2, V 2),… ,(p n , V n ), (p 1, V 1) to

$$ {\text{SW}} = \left[ {\sum\limits_{i = 1}^{n - 1} { \frac{1}{2}\left( {p_{i} V_{i + 1} - p_{i + 1} V_{i} } \right)} } \right] + \frac{1}{2}\left( {p_{n} V_{1} - p_{1} V_{n} } \right) $$
(7)

Derivation of the Formulae for Energy Transfer Rate at MPA

Equation 2 for the rate of energy transfer at MPA can be derived in a straightforward manner from basic fluid mechanics. In the analysis of CMR images, identifying the arterial wall location on the image plane at all the phases of MRI gives the distribution of blood velocity, \( \vec{V}_{\text{m}} (\vec{x},t), \) at any point x inside the arterial section and at any instant of time t. The arterial blood velocity distribution, \( \vec{V}_{\text{m}} (\vec{x},t), \) varies both spatially and temporally. The rate of the total energy transferred to the blood at MPA \( (\dot{E}_{\text{m}} ), \) neglecting potential energy changes because of gravity, is given by

$$ \dot{E}_{\text{m}} = \iint \limits_{{A_{\text{m}} }} {\left( {p_{\text{m}} + \frac{1}{2}\rho \vec{V}_{\text{m}} \cdot \vec{V}_{\text{m}} } \right)}\vec{V}_{\text{m}} \cdot ndA_{\text{m}} $$
(8)

where the subscript m stands for the MPA location; A m the MPA cross-sectional area; n the unit normal to the cross section; p m the pulsatile MPA pressure; and ρ the density of the blood.

Equation 8 can be simplified to Eq. 2 by approximating the velocity distribution \( \vec{V}_{\text{m}} (\vec{x},t) \) over the MPA cross section by an average MPA velocity vector with magnitude v m given by v m = Q m/A m, and by noting that

$$ Q_{\text{m}} = \iint \limits_{{A_{\text{m}} }} {\vec{V}_{\text{m}} \cdot ndA_{\text{m}} } , $$
(9)

is simply the volumetric flow rate at the MPA section.

Result for the Intermediate Case

The results for our intermediate subject with an atrial septal defect and partial anomalous pulmonary venous return abnormal and overloaded RV but a normal PV are presented in this section.

Figure 7 shows the RV pressure and volume variation with time. The peak pressure and peak volume are 26.6 mmHg and 111.8 mL, respectively, and fall somewhere between the rTOF and the normal subject (Table 1). The volume overloading is evident from the pressure–volume curve (Fig. 7) compared with that of rTOF and the normal subject (Figs. 4a and 4b). The extent of volume overloading is lower than our rTOF subject. As shown in Fig. 8, the P–V loop for the intermediate subject also falls in between the rTOF and the normal subject and hence the computed SW (0.8365 J) follows the same trend. Figure 8 shows that the intermediate subject has a volume overloaded RV with patterns of filling that mirror rTOF and yet operates at a relatively normal operating pressure (approx. 27 mmHg). As such, the increased pressure in rTOF RV is the result of regurgitant backflow from the PA. Interestingly, the quadrant of this PV loop between end systole and end diastole does not remain isovolumic despite the fact that the higher confirmed competency of PV and TV. The reasons for these are unclear, though possibly secondary to delayed TV given the excess flow though it compared with flow through the mitral valve. In addition, other investigators have found that the RV is never truly isovolumic.29,30 More importantly, Fig. 8 shows despite operating with an abnormally higher volume than the normal subject RV, the intermediate subject RV does not operate at higher pressure than the normal subject RV. The variation of the energy transfer rate at the MPA for the intermediate subject (Fig. 9) also is in between the normal and the rTOF subject, with minimum and the maximum values at 0.033 and 0.482 J/s, respectively. The presence of the functioning PV prevents the backflow of the blood into the RV and thus the graph for energy rate has no negative contribution. The time-averaged energy transfer rate over one cardiac cycle \( (\tilde{\dot{E}}_{\text{net}} ) \) was calculated to be 0.198 J/s. When compared with rTOF subject, the normal subject RV operates at a lower pressure, and as such, we conclude that the increased pressure in the rTOF RV is necessary to overcome the energy losses resulting from the backflow and regurgitation because of the incompetent PV.

FIGURE 7
figure 7

Variation of RV pressure and volume with time for the intermediate subject. Our intermediate subject has overloaded RV but functioning PV

FIGURE 8
figure 8

RV PV diagram for our intermediate subject contrasted with those of our normal and rTOF subject. The SW value also falls in between the normal and the rTOF subject

FIGURE 9
figure 9

MPA power output for the intermediate subject. Comparison of total rate of power output at MPA for the normal, rTOF, and the intermediate subject

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Banerjee, R.K. & Gottliebson, W.M. Right Ventricular Inefficiency in Repaired Tetralogy of Fallot: Proof of Concept for Energy Calculations From Cardiac MRI Data. Ann Biomed Eng 38, 3674–3687 (2010). https://doi.org/10.1007/s10439-010-0107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0107-2

Keywords

Navigation