Skip to main content
Log in

Cardiac Flow Analysis Applied to Phase Contrast Magnetic Resonance Imaging of the Heart

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Phase contrast magnetic resonance imaging is performed to produce flow fields of blood in the heart. The aim of this study is to demonstrate the state of change in swirling blood flow within cardiac chambers and to quantify it for clinical analysis. Velocity fields based on the projection of the three dimensional blood flow onto multiple planes are scanned. The flow patterns can be illustrated using streamlines and vector plots to show the blood dynamical behavior at every cardiac phase. Large-scale vortices can be observed in the heart chambers, and we have developed a technique for characterizing their locations and strength. From our results, we are able to acquire an indication of the changes in blood swirls over one cardiac cycle by using temporal vorticity fields of the cardiac flow. This can improve our understanding of blood dynamics within the heart that may have implications in blood circulation efficiency. The results presented in this paper can establish a set of reference data to compare with unusual flow patterns due to cardiac abnormalities. The calibration of other flow-imaging modalities can also be achieved using this well-established velocity-encoding standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. S. Achenbach, S. Ulzheimer, U. Baum, M. Kachelriess, D. Ropers, T. Giesler, W. Bautz, W. G. Daniel, W. A. Kalender, and W. Moshage. Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation, 102:2823, 2000.

    PubMed  CAS  Google Scholar 

  2. C. Baltes, S. Kozerke, M. S. Hansen, K. P. Pruessmann, J. Tsao, and P. Boesiger. Accelerating cine phase-contrast flow measurements using k-t BLAST and k-t SENSE. Magnet. Reson. Med., 54(6):1430–1438, 2005.

    Article  Google Scholar 

  3. H. G. Bogren and M. H. Buonocore. 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J. Magn. Reson. Imag., 10(5):861–869, 1999.

    Article  CAS  Google Scholar 

  4. H. G. Bogren, M. H. Buonocore, and R. J. Valente. Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. Journal of Magnetic Resonance Imaging, 19:417–427, 2004.

    Article  Google Scholar 

  5. E. Brandt, T. Ebbers, L. Wigström, J. Engvall, and M. Karlsson. Automatic detection of vortical flow patterns from three-dimensional phase contrast MRI. Proc. Int. Soc. Magnet. Reson. Med., 9:1838, 2001.

    Google Scholar 

  6. Chandran, K. B. Cardiovascular Biomechanics. New York University Biomedical Engineering Series, New York University Press, 1992.

  7. K. B. Chandran, A. Wahle, S. C. Vigmostad, M. E. Olszewski, J. D. Rossen, and M. Sonka. Coronary arteries: Imaging, reconstruction, and fluid dynamic analysis. Crit. Rev. Biomed. Eng., 34(1):23–103, 2006.

    PubMed  Google Scholar 

  8. Chandran, K. P., A. P. Yoganathan, and S. E. Rittgers. Biofluid Mechanics: The Human Circulation. CRC Press, Taylor & Francis Group, 2006.

  9. Chaoui R., Taddei F., Rizzo G., Bast C., Lenz F., Bollmann R. (2002) Doppler echocardiography of the main stems of the pulmonary arteries in the normal human fetus. Ultrasound Obst. Gyn. 11(3):173–179

    Article  Google Scholar 

  10. Y. P. Du, E. R. McVeigh, D. A. Bluemke, H. A. Silber, and T. K.F. Foo. A comparison of prospective and retrospective respiratory navigator gating in 3D MR coronary angiography. Int. J. Cardiovasc. Imag., 17(4):287–294, 2001.

    Article  CAS  Google Scholar 

  11. T. Ebbers, L. Wigström, A. F. Bolger, B. Wranne, and M. Karlsson. Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J. Biomech. Eng., 124(3):288–293, 2002.

    Article  PubMed  CAS  Google Scholar 

  12. R. R. Edelman. Contrast-enhanced MR imaging of the heart: Overview of the literature. Radiology, 232:653–668, 2004.

    Article  PubMed  Google Scholar 

  13. C. J. Elkins, M. Markl, A. Iyengar, R. Wicker, and J. Eaton. Full field velocity and temperature measurements using magnetic resonance imaging in turbulent complex internal flows. Int. J. Heat Fluid Flow, 25:702–710, 2004.

    Article  Google Scholar 

  14. A. Etebari and P. P. Vlachos. Improvements on the accuracy of derivative estimation from DPIV velocity measurements. Exp. Fluids, 39(6):1040–1050, 2005.

    Article  Google Scholar 

  15. Ferziger, J. H., and M. Peric. Computational Methods for Fluid Dynamics, 3rd edn. Springer, 2001, Number ISBN: 3540420746.

  16. J. M. Foucaut and M. Stanislas. Some considerations on the accuracy and frequency response of some derivative filters applied to particle image velocimetry vector fields. Meas. Sci. Technol., 13:1058–1071, 2002.

    Article  CAS  Google Scholar 

  17. Freedom, R. M., S.-J. Yoo, H. Mikailian, and W. Williams. The Natural and Modified History of Congenital Heart Disease. Blackwell Publishing, 2003.

  18. G. M. Friesen, T. C. Jaqnnett, M. A. Jadallah, S. L. Yates, S. R. Quint, and H. T. Nagle. A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Bio-Med. Eng., 37:85, 1990.

    Article  CAS  Google Scholar 

  19. A. Fyrenius, T. Ebbers, L. Wigström, M. Karlsson, B. Wranne, A. F. Bolger, and J. Engvall. Left atrial vortices studied with 3D phase contrast MRI. Clin. Physiol. Funct. Imag., 19(3):195, 1999.

    Google Scholar 

  20. A. Fyrenius, L. Wigström, T. Ebbers, M. Karlsson, J. Engvall, and A. F. Bolger. Three dimensional flow in the human left atrium. Heart, 86:448–455, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. J. M. Gardin, H. W. Sung, A. P. Yoganathan, J. Ball, S. McMillan, and W. L. Henry. Doppler flow velocity mapping in an in vitro model of the normal pulmonary artery. J. Am. Coll. Cardiol., 12:1366–1376, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Gertsch, M., and C. P. Cannon. The ECG: A Two-Step Approach to Diagnosis. Springer, 2003.

  23. M. Gharib, E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri. A global index for heart failure based on optimal vortex formation in the left ventricle. Proc. Natl. Acad. Sci. USA (PNAS), 103(16):6305–6308, 2006.

    Article  CAS  Google Scholar 

  24. Ghista, N. D. Applied Biomedical Engineering Mechanics. CRC Press, 2008.

  25. Ghista, N. D., and E. Y.-K. Ng. Cardiac Perfusion and Pumping Engineering (Clinically-Oriented Biomedical Engineering). World Scientific Publishing Company, 2007.

  26. F. P. Glor, J. J. M. Westenberg, J. Vierendeels, M. Danilouchkine, and P. Verdonck. Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend. Artif. Organs, 26(7):622–635, 2008.

    Article  Google Scholar 

  27. R. C. Gonzalez and R. E. Woods. Digital Image Processing, 2nd edition. Prentice-Hall, Inc., New Jersey, USA, 2002.

    Google Scholar 

  28. H. Hasegawa, W. C. Little, M. Ohno, S. Brucks, A. Morimoto, H.-J. Cheng, and C.-P. Cheng. Diastolic mitral annular velocity during the development of heart failure. Journal of the American College of Cardiology, 41:1590–1597, 2003.

    Article  PubMed  Google Scholar 

  29. Hatle, L., and B. Angelsen. Doppler Ultrasound in Cardiology: Physical Principles and Clinical Applications, 2nd edn. Philadelphia: Lea and Febiger, 1982.

    Google Scholar 

  30. Herold, V., P. Mörchel, C. Faber, E. Rommel, A. Haase, and P. M. Jakob. In vivo quantitative three-dimensional motion mapping of the murine myocardium with PC-MRI at 17.6 T. Magn. Reson. Med. 55:1058–1064, 2006.

    Article  PubMed  Google Scholar 

  31. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto. Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans. Sonics Ultrasonics, 32(3):458–464, 1985.

    Google Scholar 

  32. P. J. Kilner, G-Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nat. Med., 404:759–761, 2000.

    Article  CAS  Google Scholar 

  33. I. Koktzoglou, A. Kirpalani, T. J. Carroll, D. Li, and J. C. Carr. Dark-blood MRI of the thoracic aorta with 3D diffusion-prepared steady-state free precession: Initial clinical evaluation. Am. Roentgen Ray Soc., 189:966–972, 2007.

    Google Scholar 

  34. A. C. Larson, R. D. White, G. Laub, E. R. McVeigh, D. Li, and O. P. Simonetti. Self-gated cardiac cine MRI. Magnetic Resonance in Medicine, 51(1):93–102, 2004.

    Article  Google Scholar 

  35. S. Ley, J. Ley-Zaporozhan, K. Kreitner, S. Iliyushenko, M. Puderbach, W. Hosch, H. Wenz, J. Schenk, and H. Kauczor. MR flow measurements for assessment of the pulmonary, systemic and bronchosystemic circulation: Impact of different ECG gating methods and breathing schema. Eur. J. Radiol., 61(1):124–129, 2007.

    Article  PubMed  Google Scholar 

  36. Lodha, S. K., A. Pang, R. E. Sheehan, and C. M. Wittenbrink. UFLOW: Visualizing uncertainty in fluid flow. In: Seventh IEEE Visualization 1996 (VIS '96), pp. 249–254, 1996.

  37. L. Loevstakken, S. Bjaerum, D. Martens, and H. Torp. Real-time blood motion imaging v a 2D blood flow visualization technique. IEEE Ultrasonics Symp., 1:602–605, 2004.

    Google Scholar 

  38. Q. Long, X. Y. Xu, U. Köhler, M. B. Robertson, I. Marshall, and P. Hoskins. Quantitative comparison of CFD predicted and MRI measured velocity fields in a carotid bifurcation phantom. Biorheology, 39(3-4):467–474, 2002.

    PubMed  Google Scholar 

  39. J. Lotz, C. Meier, A. Leppert, and M. Galanski. Cardiovascular flow measurement with phase-contrast MR imaging: Basic facts and implementation. Radiographics, 22:651–671, 2002.

    PubMed  Google Scholar 

  40. S. E. Maier, D. Meier, P. Boesiger, U. T. Moser, and A. Vieli. Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology, 171:487–492, 1989.

    PubMed  CAS  Google Scholar 

  41. M. Mark, A. Harloff, T. A. Bley, M. Zaitsev, B. Jung, E. Weigang, M. Langer, J. Hennig, and A. Frydrychowicz. Time-resolved 3D MR velocity mapping at 3T: Improved navigator-gated assessment of vascular anatomy and blood flow. J. Magn. Reson. Imag., 25:824–831, 2007.

    Article  Google Scholar 

  42. M. Markl, F. P. Chan, M. T. Alley, K. L. Wedding, M. T. Draney, C. J. Elkins, D. W. Parker, R. Wicker R, C. A. Taylor, R. J. Herfkens, and N. J. Pelc. Time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imag., 17:499–506, 2003.

    Article  Google Scholar 

  43. M. Markl, M. T. Draney, M. D. Hope, J. M. Levin, F. P. Chan, M. T. Alley, N. J. Pelc, and R. J. Herfkens. Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J. Comput. Assist. Tomogr., 28:459–468, 2004.

    Article  PubMed  Google Scholar 

  44. G. Mielke and N. Benda. Blood flow velocity waveforms of the fetal pulmonary artery and the ductus arteriosus: reference ranges from 13 weeks to term. Ultrasound Obst. Gyn., 15(3):213–218, 2002.

    Article  Google Scholar 

  45. U. Morbiducci, R. Ponzini, M. Grigioni, and A. Redaelli. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. a numeric study. J. Biomech., 40(3):519–534, 2007.

    Article  PubMed  Google Scholar 

  46. U. Morbiducci, R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. De Cobelli, A. Del Maschio, F. M. Montevecchi, and A. Redaelli. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng., 37(3):516–531, 2009.

    Article  PubMed  Google Scholar 

  47. G. J. Morgan-Hughes, A. J. Marshall, and C. Roobottom. Morphologic assessment of patent ductus arteriosus in adults using retrospectively ECG-gated multidetector CT. Am. J. Roentgenol., 181:749–754, 2003.

    Google Scholar 

  48. J. Narula, M. A. Vannan, and A. N. DeMaria. Of that waltz in my heart. J. Am. Coll. Cardiol., 49:917–920, 2007.

    Article  PubMed  Google Scholar 

  49. G. M. Nijm, A. V. Sahakian, S. Swiryn, J. C. Carr, J. J. Sheehan, and A. C. Larson. Comparison of self-gated cine MRI retrospective cardiac synchronization algorithms. Journal of Magnetic Resonance Imaging, 28(3):767–772, 2008.

    Article  Google Scholar 

  50. S. Oyre, E. M. Pedersen, S. Ringgaard, P. Boesiger, and W. P. Paaske. In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta. Eur. J. Vasc. Endovasc. Surg., 13:263–271, 1997.

    Article  PubMed  CAS  Google Scholar 

  51. S. Oyre, S. Ringgaard, S. Kozerke, W. P. Paaske, M. Erlandsen, P. Boesiger, and E. M. Pedersen. Accurate noninvasive quantitation of blood flow, crosssectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data. J. Am. Coll. Cardiol., 32:128–134, 1998.

    Article  PubMed  CAS  Google Scholar 

  52. J. Pan and W. J. Tompkins. A real-time QRS detection algorithm. IEEE Trans. Bio-Med. Eng., 32(3):230–236, 1985.

    Article  CAS  Google Scholar 

  53. O. Pierrakos and P. P. Vlachos. The effect of vortex formation on left ventricular filling and mitral valve efficiency. J. Biomech. Eng.-Trans. ASME, 128(4):527–539, 2006.

    Article  Google Scholar 

  54. G. Plehn, J. Vormbrock, T. Butz, M. Christ, H-J. Trappe, and A. Meissner. Different effect of exercise on left ventricular diastolic time and interventricular dyssynchrony in heart failure patients with and without left bundle branch block. Int. J. Med. Sci., 5:333–340, 2008.

    PubMed  Google Scholar 

  55. A. J. Powell, S. E. Maier, T. Chung, and T. Geva. Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: In vitro and in vivo validation. Pediatr. Cardiol., 21:104–110, 2000.

    Article  PubMed  CAS  Google Scholar 

  56. M. Raffel, C. Willert, and J. Kompenhans. Particle Image Velocimetry. Springer-Verlag, Berlin Heidelberg, Germany, 1998.

    Google Scholar 

  57. Raguin, L. G., S. L. Honecker, and J. G. Georgiadis. MRI velocimetry in microchannel networks. In: 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, 2005, pp. 319–322.

  58. T. Schenkel, M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Annals of Biomedical Engineering, 37(3):503–515, 2009.

    Article  PubMed  Google Scholar 

  59. G. R. Shaw and P. Savard. On the detection of QRS variations in the ECG. IEEE Trans. Bio-Med. Eng., 42(7):736–741, 1995.

    Article  CAS  Google Scholar 

  60. F. W. Stallmann and H. V. Pipberger. Automatic recognition of electrocardiographic waves by digital computer. Circ. Res., 9:1138–1143, 1961.

    PubMed  CAS  Google Scholar 

  61. Tang, A., D. Kacher, E. Lam, M. Brodsky, F. Jolesz, and E. Yang. Multi-modal imaging: simultaneous MRI and ultrasound imaging for carotid arteries visualization. In: Proceedings of the 29th Annual International Conference of the IEEE (EMBS 2007), Lyon, France, 2007, pp. 2603–2606.

  62. K. S. L. Teo, K. Roberts-Thomson, and S. G. Worthley. Utility of intravascular ultrasound in the diagnosis of ambiguous calcific left main stenoses. J. Invasive Cardiol., 16:385, 2004.

    PubMed  Google Scholar 

  63. M. Tetsuya. ECG gating in cardiac MRI. Jpn. J. Magnet. Reson. Med., 23(4):120–130, 2003.

    Google Scholar 

  64. R. B. Thompson and E. R. McVeigh. Flow-gated phase-contrast MRI using radial acquisitions. Magnet. Reson. Med., 52(3):598–604, 2004.

    Article  Google Scholar 

  65. P. E. Trahanias. An approach to QRS complex detection using mathematical morphology. IEEE Trans. Bio-Med. Eng., 40(2):201–205, 1993.

    Article  CAS  Google Scholar 

  66. R. Uterhinninghofen, S. Ley, J. Zaporozhan, G. Szabö, and R. Dillmann. A versatile tool for flow analysis in 3D-phase-contrast magnetic resonance imaging. Int. J. Comput. Assist. Radiol. Surg., 1(1):107–117, 2006.

    Article  Google Scholar 

  67. R. S. Vasan, M. G. Larson, E. J. Benjamin, J. C. Evans, C. K. Reiss, and D. Levy. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction. Journal of the American College of Cardiology, 33:1948–1955, 1999.

    Article  PubMed  CAS  Google Scholar 

  68. A. Wahle, J. J. Lopezd, M. E. Olszewskia, S. C. Vigmostadb, K. B. Chandran, J. D. Rossenc, and M. Sonkaa. Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Med. Image Anal., 10(4):615–631, 2006.

    Article  PubMed  Google Scholar 

  69. G. Webb and M. A. Gatzoulis. Atrial septal defects in the adult - recent progess and overview. Circulation, 114:1645–1653, 2006.

    Article  PubMed  Google Scholar 

  70. L. Wigstrom, L. Sjoqvist, and B. Wranne. Temporally resolved 3D phase contrast imaging. Magnet. Reson. Med., 36:800–803, 1996.

    Article  CAS  Google Scholar 

  71. A. B. Wolbarst. Looking Within How X-ray, CT, MRI, Ultrasound, and Other Medical Images are Created, and How They Help Physicians Save Lives. University of California Press, USA, 1999.

    Google Scholar 

  72. K. K. L. Wong, R. M. Kelso, S. G. Worthley, P. Sanders, J. Mazumdar, and D. Abbott. Medical imaging and processing methods for cardiac flow reconstruction. J. Mech. Med. Biol., 9(1):1–20, 2009.

    Article  CAS  Google Scholar 

  73. K. K. L. Wong, R. M. Kelso, S. G. Worthley, P. Sanders, J. Mazumdar, and D. Abbott. Theory and validation of magnetic resonance fluid motion estimation using intensity flow data. PLoS ONE, 4(3):e4747, 2009.

    Article  PubMed  CAS  Google Scholar 

  74. S. Yamashita, H. Isoda, M. Hirano, H. Takeda, S. Inagawa, Y. Takehara, M. T. Alley, M. Markl, N. J. Pelc, and H. Sakahara. Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. Journal of Magnetic Resonance Imaging, 25:473–478, 2007.

    Article  Google Scholar 

  75. G. Z. Yang, R. H. Mohiaddin, P. J. Kilner, and D. N. Firmin. Vortical flow feature recognition: A topological study of in-vivo flow patterns using MR velocity mapping. J. Comput. Assist. Tomogr., 22:577–586, 1998.

    Article  PubMed  CAS  Google Scholar 

  76. S. Z. Zhao, P. Papathanasopoulou, Q. Long, I. Marshall, and X. Y. Xu. Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom. Ann. Biomed. Eng., 31(8):962–971, 2003.

    Article  PubMed  CAS  Google Scholar 

  77. M. R. Zile and D. L. Brutsaert. New concepts in diastolic dysfunction and diastolic heart failure: Part I. Circulation, 105:1387–1393, 2002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank the Royal Adelaide Hospital for the supply of magnetic resonance images, and to Payman Molaee for his assistance in scanning the subject used in this research. Special thanks are also extended to Fangli Xiong from Nanyang Technological University (Singapore) and the reviewers of this paper. Their comments and suggestions, which have made the paper more meaningful and interesting, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin K. L. Wong.

Additional information

Medical image processing software named Medflovan, which is developed by Kelvin K. L. Wong, is used to produce the results displayed in this paper. The research-based version of this software system is utilized to provide cardiac flow visualization and analysis effectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, K.K.L., Kelso, R.M., Worthley, S.G. et al. Cardiac Flow Analysis Applied to Phase Contrast Magnetic Resonance Imaging of the Heart. Ann Biomed Eng 37, 1495–1515 (2009). https://doi.org/10.1007/s10439-009-9709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9709-y

Keywords

Navigation