Skip to main content
Log in

A semi-analytical approach for calculating the equilibrium structure and radial breathing mode frequency of single-walled carbon nanotubes

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A semi-analytical model for determining the equilibrium configuration and the radial breathing mode (RBM) frequency of single-wall carbon nanotubes (CNTs) is presented. By taking advantage of the symmetry characteristics, a CNT structure is represented by five independent variables. A line search optimization procedure is employed to determine the equilibrium values of these variables by minimizing the potential energy. With the equilibrium configuration obtained, the semi-analytical model enables an efficient calculation of the RBM frequency of the CNTs. The radius and radial breathing mode frequency results obtained from the semi-analytical approach are compared with those from molecular dynamics (MD) and ab initio calculations. The results demonstrate that the semi-analytical approach offers an efficient and accurate way to determine the equilibrium structure and radial breathing mode frequency of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002)

    Article  Google Scholar 

  2. Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  3. Li, C., Chou, T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  4. Odegard, G.M., Gates, T.S., Nicholson, L.M.: Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880 (2002)

    Article  Google Scholar 

  5. Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. Part B 36, 468–477 (2005)

    Article  Google Scholar 

  6. Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511 (1996)

    Article  Google Scholar 

  7. Pantano, A., Parks, D.M., Boyce, M.C.: Mechanics of deformation of single-and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789–821 (2004)

    Article  MATH  Google Scholar 

  8. Hu, Y.G., Liew, K.M., Wang, Q., et al.: Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes. J. Mech. Phys. Solids 56, 3475–3485 (2008)

    Article  MATH  Google Scholar 

  9. Jefferson, Z., Zheng, Q.S., Wang, L.F., et al.: Mechanical properties of single-walled carbon nanotube bundles as bulk materials. J. Mech. Phys. Solids 53, 123–142 (2005)

  10. Wang, Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)

    Article  Google Scholar 

  11. Liu, J.Z., Zheng, Q., Jiang, Q.: Effect of a rippling mode on resonances of carbon nanotubes. Phys. Rev. Lett. 86, 4843 (2001)

    Article  Google Scholar 

  12. Qian, D., Wagner, G.J., Liu, W.K., et al.: Mechanics of carbon nanotubes. Appl. Mech. Rev. 55, 495–533 (2002)

    Article  Google Scholar 

  13. Sánchez-Portal, D., Artacho, E., Soler, J.M., et al.: Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59, 12678 (1999)

    Article  Google Scholar 

  14. Vaccarini, L., Goze, C., Henrard, L., et al.: Mechanical and electronic properties of carbon and boron-nitride nanotubes. Carbon 38, 1681–1690 (2000)

    Article  Google Scholar 

  15. Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  MATH  Google Scholar 

  16. Wang, L., Zheng, Q., Liu, J.Z., et al.: Size dependence of the thin-shell model for carbon nanotubes. Phys. Rev. Lett. 95, 105501 (2005)

    Article  Google Scholar 

  17. Wang, Q.: Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int. J. Solids Struct. 41, 5451–5461 (2004)

    Article  MATH  Google Scholar 

  18. Huang, Y., Wu, J., Hwang, K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006)

    Article  Google Scholar 

  19. Ghavanloo, E., Ahmad Fazelzadeh, S., Rafii-Tabar, H.: Analysis of radial breathing-mode of nanostructures with various morphologies: a critical review. Int. Mater. Rev. 60, 312–329 (2015)

  20. Kürti, J., Kresse, G., Kuzmany, H.: First-principles calculations of the radial breathing mode of single-wall carbon nanotubes. Phys. Rev. B 58, R8869 (1998)

    Article  Google Scholar 

  21. Saito, R., Hofmann, M., Dresselhaus, G., et al.: Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011)

    Article  Google Scholar 

  22. Kürti, J., Zólyomi, V., Kertesz, M., et al.: The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour. New J. Phys. 5, 125 (2003)

    Article  Google Scholar 

  23. Jiang, H., Zhang, P., Liu, B., et al.: The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)

    Article  Google Scholar 

  24. Popov, V.N.: Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model. New J. Phys. 6, 17 (2004)

    Article  Google Scholar 

  25. Popov, V.N., Lambin, P.: Radius and chirality dependence of the radial breathing mode and the g-band phonon modes of single-walled carbon nanotubes. Phys. Rev. B 73, 085407 (2006)

    Article  Google Scholar 

  26. Saito, R., Dresselhaus, G., Dresselhaus, M.S., et al.: Physical Properties of Carbon Nanotubes, 4. World Scientific, Singapore (1998)

  27. Zimmermann, J., Pavone, P., Cuniberti, G.: Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: minimal force-constant model. Phys. Rev. B 78, 045410 (2008)

    Article  Google Scholar 

  28. Lawler, H.M., Areshkin, D., Mintmire, J.W., et al.: Radial-breathing mode frequencies for single-walled carbon nanotubes of arbitrary chirality: first-principles calculations. Phys. Rev. B 72, 233403 (2005)

    Article  Google Scholar 

  29. Xiao, Y., Li, Z.M., Yan, X.H., et al.: Curvature effect on the radial breathing modes of single-walled carbon nanotubes. Phys. Rev. B 71, 233405 (2005)

    Article  Google Scholar 

  30. Chang, T.: Explicit solution of the radial breathing mode frequency of single-walled carbon nanotubes. Acta Mech. Sin. 23, 159–162 (2007)

    Article  MATH  Google Scholar 

  31. Cheng, H.C., Liu, Y.L., Wu, C.H., et al.: On radial breathing vibration of carbon nanotubes. Comput. Methods Appl. Mech. Eng. 199, 2820–2827 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Brenner, D.W., Shenderova, O.A., Harrison, J.A., et al.: A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons. J. Phys. 14, 783 (2002)

    Google Scholar 

  33. Tersoff, J.: Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879 (1988)

    Article  Google Scholar 

  34. Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262 (1985)

    Article  Google Scholar 

  35. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  36. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7, 155–162 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, J., Zhang, Z., Liu, B., et al.: Numerical analyses for the atomistic-based shell theory of carbon nanotubes. Int. J. Plast. 25, 1879–1887 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Science Foundation (Grant CBET-0955096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Li.

Appendices

Appendix 1: Bond angle calculation

A Cartesian coordinate system with the origin at the center of the circular cross-section is defined as shown in Fig. A1. Since the points A, \(B_j\), and \(B_k\) are all on the same cylindrical surface, \(\overrightarrow{\varvec{OA}}\), \(\overrightarrow{\varvec{OB}_j}\), and \(\overrightarrow{\varvec{OB}_k}\) can be expressed as: \(\overrightarrow{\varvec{OA}} = \{R,0,0\}\), \(\overrightarrow{\varvec{OB}_j} = \{R \cos \beta _j, R \sin \beta _j, h_j\}\), \(\overrightarrow{\varvec{OB}_k} = \{R \cos \beta _k, R \sin \beta _k, h_k\}\) with \(j \ne k\) and \(j,k = 1,2,3\). Therefore,

$$\begin{aligned} \begin{aligned}&\overrightarrow{\varvec{AB}_j} = \{R(\cos \beta _j - 1), R \sin \beta _j, h_j\}, \\&\overrightarrow{\varvec{AB}_k} = \{R(\cos \beta _k - 1), R \sin \beta _k, h_k\}. \\ \end{aligned} \end{aligned}$$
(A.1)

We obtain

$$\begin{aligned} \begin{aligned}&\cos \angle B_jAB_k = \frac{\overrightarrow{\varvec{AB}_j} \cdot \overrightarrow{\varvec{AB}_k}}{|\overrightarrow{\varvec{AB}_j}||\overrightarrow{\varvec{AB}_k}|} \\&\quad = \frac{R^2(\cos \beta _j{-} 1)(\cos \beta _k{-} 1){+}R^2 \sin \beta _j \sin \beta _k{+}h_j h_k}{r_j r_k}. \end{aligned}\nonumber \\ \end{aligned}$$
(A.2)

Recalling Eq. (2), we have

$$\begin{aligned}&1 - \cos \beta _j = 2\sin ^2\frac{\beta _j}{2} = 2\frac{l_j^2}{4R^2},\nonumber \\&\sin \beta _j = 2\sin \frac{\beta _j}{2}\cos \frac{\beta _j}{2} = 2\frac{l_j}{2R}\sqrt{1-\frac{l_j^2}{4R^2}}. \end{aligned}$$
(A.3)

Substituting Eq. (A.3) with \(h_j = r_j \sin \alpha _j \) and \(l_j = r_j \cos \alpha _j \) into Eq. (A.2), we have

$$\begin{aligned}&\cos \angle B_jAB_k \nonumber \\&\quad = \frac{1}{r_j r_k} \left[ 4R^2\frac{l_j^2}{4R^2}\frac{l_k^2}{4R^2} +4R^2 \left( \frac{l_j}{2R}\sqrt{1-\frac{l_j^2}{4R^2}} \right) \right. \nonumber \\&\qquad \left. \left( \frac{l_k}{2R}\sqrt{1-\frac{l_k^2}{4R^2}} \right) +h_j h_k \right] \nonumber \\&\quad =\frac{r_j r_k }{4R^2}\cos ^2\alpha _j \cos ^2\alpha _k \nonumber \\&\qquad +\, \cos \alpha _j \cos \alpha _k \sqrt{1-\frac{r_j \cos ^2\alpha _j}{4R^2}} \sqrt{1-\frac{r_k \cos ^2\alpha _k}{4R^2}} \nonumber \\&\qquad +\, \sin \alpha _j \sin \alpha _k. \end{aligned}$$
(A.4)
Fig. 6
figure 6

Bond angle calculation

Appendix 2: REBO potential and its derivatives

The general form of the REBO potential energy is given by [32]

$$\begin{aligned} w = \frac{1}{2} \sum _{a,b} V(r_{ab}) = \frac{1}{2}\sum _{a,b} \left[ V_R(r_{ab}) - \bar{b}_{ab}V_A(r_{ab})\right] , \end{aligned}$$
(A.5)

where \(V_R(r_{ab})\) and \(V_A(r_{ab})\) are repulsive and attractive energy between atom a and atom b, respectively. \(\bar{b}_{ab}\) is the multi-body coupling modification term: \(\bar{b}_{ab} = \frac{1}{2} \left( b_{ab} + b_{ba} \right) \). In this work, due to the \(C_2\)-axis rotational symmetry, \(b_{ab} = b_{ba}\). Then the potential energy of a unit cell containing only one atom can be expressed using the bond indexes as

$$\begin{aligned} w = \frac{1}{2} \sum _{j=1}^3 V(r_{j}) = \frac{1}{2}\sum _{j=1}^3 (V_R(r_{j}) - b_{j}V_A(r_{j})), \end{aligned}$$
(A.6)

where \(j = 1,2,3\) are the indexes of three bonds surrounding an atom. The terms in Eq. (A.6) are given by [32]

$$\begin{aligned} V_R(r_{j})= & {} \left( 1+\frac{Q}{r_{j}} \right) A\mathrm{e}^{-\alpha r_{j}} f_\mathrm{c}(r_{j}), \nonumber \\ V_A(r_{j})= & {} \sum _{n=1}^3 B_n \mathrm{e}^{-\beta _nr_{j}} f_\mathrm{c}(r_{j}), \nonumber \\ b_{j}= & {} \left[ 1+\sum _{k\ne j}G(\cos \theta _{jk})f_\mathrm{c}(r_{k})\right] ^{-\frac{1}{2}},\nonumber \\ \qquad j,k= & {} 1,2,3, \end{aligned}$$
(A.7)

where \(\theta _{jk}\) is the angle between bond j and bond k. The cutoff function \(f_\mathrm{c}(r)\) is defined as

$$\begin{aligned} f_\mathrm{c}(r)= & {} \left\{ \begin{array}{ll} 1, &{}\quad \,\, r< R_1, \\ \frac{1}{2} \left\{ 1+\cos \left[ \frac{\uppi (r-R_1)}{R_2 - R_1} \right] \right\} , &{}\quad R_1 \leqslant r \leqslant R_2,\\ 0,&{}\quad \,\, r> R_2, \end{array} \right. \end{aligned}$$
(A.8)

and \(G(\cos \theta _{jk})\) is an empirical 6-order spline function. For C–C bonds, \(G(\cos \theta )\) is given by [37]

$$\begin{aligned} G(\cos \theta ) = \left\{ \begin{aligned}&0.27186 +0.48922 \cos \theta \\&-0.43286 \cos ^2\theta -0.56140 \cos ^3\theta \\&+1.2711 \cos ^4\theta -0.037931 \cos ^5 \theta , \\&\,\mathrm{for} \ \theta < 109.47^\circ ,\\&0.69669 +5.5444 \cos \theta \\&+23.432 \cos ^2\theta +55.948 \cos ^3\theta \\&+69.876 \cos ^4\theta +35.312 \cos ^5\theta , \\&\,\mathrm{for} \ 109.47^\circ \leqslant \theta \leqslant 120^\circ ,\\&0.00260 -1.0980 \cos \theta \\&-4.3460 \cos ^2\theta -6.8300 \cos ^3\theta \\&-4.9280 \cos ^4\theta -1.3424 \cos ^5\theta , \\&\,\mathrm{for} \ \theta > 120^\circ .\end{aligned} \right. \end{aligned}$$
(A.9)

The constant parameters QA, \(\alpha \), \(B_n\), \(\beta _n\), \(R_1\), and \(R_2\) are listed in Table A1 [23].

Table 5 Parameters for \(V_R\) and \(V_A\)

Next, the derivatives of the REBO potential are obtained. Denoting \(\frac{1}{2}\sum _{j=1}^3 V(r_{j})\) as W, the first order partial derivatives are

$$\begin{aligned}&\frac{\partial W}{\partial r_j} = \frac{1}{2}\left[ \frac{\mathrm{d}V_R}{\mathrm{d}r_j}(r_j) - b_{j}\frac{\mathrm{d}V_A}{\mathrm{d}r_j}(r_j) - \sum _{k \ne j}\frac{\partial b_{k}}{\partial r_j}V_A(r_k)\right] ,\nonumber \\\end{aligned}$$
(A.10)
$$\begin{aligned}&\frac{\partial W}{\partial \cos \theta _{jk}} = -\frac{1}{2}\left[ \frac{\partial b_{j}}{\partial \cos \theta _{jk}}V_A(r_j)+\frac{\partial b_{k}}{\partial \cos \theta _{jk}}V_A(r_k)\right] \nonumber \\ \end{aligned}$$
(A.11)

\(\frac{\mathrm{d}V_R}{\mathrm{d}r_j}(r_j)\), \(\frac{\mathrm{d}V_A}{\mathrm{d}r_j}(r_j)\), \(\frac{\partial B_{k}}{\partial r_j}\) and \(\frac{\partial B_{j}}{\partial \cos \theta _{jk}}\) can be obtained from Eqs. (A.7) and (A.8) as

$$\begin{aligned}&\frac{\mathrm{d}V_R}{\mathrm{d}r_{j}}(r_j) = -\left[ \alpha \left( 1+\frac{Q}{r_{j}} \right) + \frac{Q}{r_{j}^2} \right] A\mathrm{e}^{-\alpha r_{j}} f_\mathrm{c}(r_{j}) \nonumber \\&\qquad +\left( 1+\frac{Q}{r_{j}} \right) A\mathrm{e}^{-\alpha r_{j}} \frac{\mathrm{d}f_\mathrm{c}}{\mathrm{d}r}(r_{j}), \end{aligned}$$
(A.12)
$$\begin{aligned}&\frac{\mathrm{d}V_A}{\mathrm{d}r_{j}}(r_j) = \sum _{n=1}^3 B_n \mathrm{e}^{-\beta _nr_{j}} \left( \frac{\mathrm{d}f_\mathrm{c}}{\mathrm{d}r}(r_{j}) - \beta _n f_\mathrm{c}(r_{j}) \right) , \end{aligned}$$
(A.13)
$$\begin{aligned}&\frac{\mathrm{d} b_{k}}{\mathrm{d} r_j} = -\frac{1}{2}\left[ 1+\sum _{l\ne k}G(\cos \theta _{kl}) f_\mathrm{c}(r_{l})\right] ^{-\frac{3}{2}} G(\cos \theta _{kj}) \frac{\mathrm{d}f_\mathrm{c}}{\mathrm{d}r} (r_{j}), \end{aligned}$$
(A.14)
$$\begin{aligned}&\frac{\mathrm{d} b_{k}}{\mathrm{d} \cos _{jk}} = -\frac{1}{2}\left[ 1+\sum _{l\ne k}G(\cos \theta _{kl})f_\mathrm{c}(r_{l})\right] ^{-\frac{3}{2}} \frac{\mathrm{d} G(\cos \theta _{kj})}{\mathrm{d} \cos \theta _{jk}} f_\mathrm{c}(r_{k}),\nonumber \\ \end{aligned}$$
(A.15)

where

$$\begin{aligned} \frac{\mathrm{d} f_\mathrm{c}}{\mathrm{d} r} = \left\{ \begin{array}{ll} 0 , &{}\quad r< R^{(1)}, \\ \frac{-\uppi }{2(R^{(2)} - R^{(1)})} \sin \frac{\uppi (r-R^{(1)})}{R^{(2)} - R^{(1)}}, &{}\quad R^{(1)} \leqslant r \leqslant R^{(2)},\\ 0, &{}\quad r> R^{(2)}, \end{array} \right. \nonumber \\ \end{aligned}$$
(A.16)

and \(\frac{\mathrm{d} G(\cos \theta )}{\mathrm{d} \cos \theta }\) can be easily obtained from Eq. (A.9). Then, \(\nabla W\) can be computed by combining Eq. (A.10) with Eqs. (10) and (11). With \(\nabla W\) computed, the unit cell position vector \({\varvec{x}}=\left\{ r_1, r_2, \alpha _1, \alpha _2, \alpha _3\right\} \) is optimized by following the energy minimization procedure given in Algorithm 1. The equilibrium configuration and the radius of the CNT can then be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Thompson, L. & Li, G. A semi-analytical approach for calculating the equilibrium structure and radial breathing mode frequency of single-walled carbon nanotubes. Acta Mech. Sin. 32, 1075–1087 (2016). https://doi.org/10.1007/s10409-016-0582-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0582-2

Keywords

Navigation