Skip to main content
Log in

Influence of lift forces on particle capture on a functionalized surface

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Numerous situations involve the capture of particles onto a functionalized surface in a laminar flow, such as classical biomedical assays, lab on a chip devices or even biological research protocols. Being able to control this capture is thus an important issue that we address in this paper. We focus on a simple and widely used geometry, the straight microfluidic channel, in which particles undergo two weak effects: diffusion towards the functionalized surface and lift forces expelling them away from it. We show that the competition between these two weak mechanisms yields strongly different capture behavior whose occurrence depends on the value of a new lifto-diffusive dimensionless number \({\mathcal {N}}_{\text {LD}}\). We show that tuning the flow rate and the channel dimension to get proper values of this number allow to trigger, via a pure hydrodynamic effect, the capture or non-capture of particles on surfaces. For example, we show that, under certain conditions, doubling the flow rate reduces the capture rate by four orders of magnitude. Additionally, we provide the particle distribution in the liquid along the channel, resulting from this competition, for different \({\mathcal {N}}_{\text {LD}}\) values. We believe that this work opens new perspectives for analysis and biotechnology applications. More precisely, the proposed model should extend to any transverse force that can be written in the form of a potential energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackerberg R, Patel R, Gupta S (1978) The heat/mass transfer to a finite strip at small Péclet numbers. J Fluid Mech 86:49–65

    Article  MATH  Google Scholar 

  • Adamczyk Z, Siwek B, Zembala M, Belouschek P (1994) Kinetics of localized adsorption of colloid particles. Adv Coll Interface Sci 48:151–280

    Article  Google Scholar 

  • Alden JA, Compton RG (1996) Hydrodynamic voltammetry with channel microband electrodes: axial diffusion effects. J Electroanal Chem 404:27–35

    Article  Google Scholar 

  • Amatore C, Da Mota N, Sella C, Thouin L (2007) Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode. Anal Chem 79:8502–8510

    Article  Google Scholar 

  • Beaucourt J, Biben T, Misbah C (2004) Optimal lift force on vesicles near a compressible substrate. Europhys Lett 67:676

    Article  Google Scholar 

  • Branagan SP, Contento NM, Bohn PW (2012) Enhanced mass transport of electroactive species to annular nanoband electrodes embedded in nanocapillary array membranes. J Am Chem Soc 134:8617–8624

    Article  Google Scholar 

  • Burris KP, Stewart CN Jr (2012) Fluorescent nanoparticles: sensing pathogens and toxins in foods and crops. Trends Food Sci Technol 28:143–152

    Article  Google Scholar 

  • Callens N, Hoyos M, Kurowski P, Iorio CS (2008) Particle sorting in a mini step-split-flow thin channel: influence of hydrodynamic shear on transversal migration. Anal Chem 80:4866–4875

    Article  Google Scholar 

  • Chen A, Kozak D, Battersby BJ, Forrest RM, Scholler N, Urban N, Trau M (2009) Antifouling surface layers for improved signal-to-noise of particle-based immunoassays. Langmuir 25:13510–13515

    Article  Google Scholar 

  • Cherukat P, McLaughlin JB (1994) The inertial lift on a rigid sphere in a linear shear. J Fluid Mech 263:1–18

    Article  MATH  Google Scholar 

  • Cherukat P, McLaughlin JB, Dandy DS (1999) A computational study of the inertial lift on a sphere in a linear shear flow field. Int J Multiph Flow 25:15–33

    Article  MATH  Google Scholar 

  • Compton RG, Fisher AC, Wellington RG, Dobson PJ, Leigh PA (1993) Hydrodynamic voltammetry with microelectrodes: channel microband electrodes; theory and experiment. J Phys Chem 97:10410–10415

    Article  Google Scholar 

  • Ferraro D, Champ J, Teste B, Serra M, Malaquin L, Descroix S, de Cremoux P, Viovy, (2017) J.-L. Microchip Diagnostics; Springer 113–121

  • Guo H, Idris NM, Zhang Y (2011) LRET-based biodetection of DNA release in live cells using surface-modified upconverting fluorescent nanoparticles. Langmuir 27:2854–2860

    Article  Google Scholar 

  • Hamaker HC (1937) The London-van der Waals attraction between spherical particles. Physica 4:1058–1072

    Article  Google Scholar 

  • Helmy A, Barthes-Biesel D (1982) Migration of a spherical capsule freely suspended in an unbounded parabolic flow. Journal de Mécanique théorique et appliquée 1:859–880

    MATH  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces. Academic press, Cambridge

    Google Scholar 

  • King MR, Leighton DT Jr (1997) Measurement of the inertial lift on a moving sphere in contact with a plane wall in a shear flow. Phys Fluids 9:1248–1255

    Article  Google Scholar 

  • Krishnan GP, Leighton DT Jr (1995) Inertial lift on a moving sphere in contact with a plane wall in a shear flow. Phys Fluids 7:2538–2545

    Article  MATH  Google Scholar 

  • Kuzmichev A, Skolnik J, Zybin A, Hergenröder R (2018) Absolute analysis of nanoparticle suspension with surface plasmon microscopy. Anal Chem 90:10732–10737

    Article  Google Scholar 

  • Lemineur J-F, Stockmann TJ, Médard J, Smadja C, Combellas C, Kanoufi F (2019) Optical nanoimpacts of dielectric and metallic nanoparticles on gold surface by reflectance microscopy: adsorption or bouncing? J Anal Test 3:175–188

    Article  Google Scholar 

  • Li Q, Rudolph V, Peukert W (2006) London-van der Waals adhesiveness of rough particles. Powder Technol 161:248–255

    Article  Google Scholar 

  • Matas J, Morris J, Guazzelli E (2004) Lateral forces on a sphere. Oil Gas Sci Technol 59:59–70

    Article  MATH  Google Scholar 

  • Mutlu BR, Edd JF, Toner M (2018) Oscillatory inertial focusing in infinite microchannels. Proc Natl Acad Sci 115:7682–7687

    Article  Google Scholar 

  • Newman J (1973) The fundamental principles of current distribution and mass transport in electrochemical cells in electroanalytical chemistry, vol 6. Marcel Dekher, lnc, New York (AJ Bard, ed.)

    Google Scholar 

  • Ni K, Lu H, Wang C, Black KC, Wei D, Ren Y, Messersmith PB (2012) A novel technique for in situ aggregation of Gluconobacter oxydans using bio-adhesive magnetic nanoparticles. Biotechnol Bioeng 109:2970–2977

    Article  Google Scholar 

  • Nieuwstadt HA, Seda R, Li DS, Fowlkes JB, Bull JL (2011) Microfluidic particle sorting utilizing inertial lift force. Biomed Microdevice 13:97–105

    Article  Google Scholar 

  • Nunna BB, Mandal D, Lee JU, Singh H, Zhuang S, Misra D, Bhuyian MNU, Lee ES (2019) Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor. Nano Converg 6:1–12

    Article  Google Scholar 

  • Parant H, Muller G, Le Mercier T, Poulin P, Tarascon J-M, Colin A (2017) Complete study of a millifluidic flow battery using iodide and ferricyanide ions: modeling, effect of the flow and kinetics. Microfluid Nanofluid 21:171

    Article  Google Scholar 

  • Rees NV, Alden JA, Dryfe RA, Coles BA, Compton RG (1995) Voltammetry under high mass transport conditions. The high speed channel electrode and heterogeneous kinetics. J Phys Chem 99:14813–14818

    Article  Google Scholar 

  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:529

    Article  Google Scholar 

  • Sansuk S, Bitziou E, Joseph MB, Covington JA, Boutelle MG, Unwin PR, Macpherson JV (2013) Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode. Anal Chem 85:163–169

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671

    Article  Google Scholar 

  • Schonberg JA, Hinch E (1989) Inertial migration of a sphere in Poiseuille flow. J Fluid Mech 203:517–524

    Article  MathSciNet  MATH  Google Scholar 

  • Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in Poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J Fluid Mech 14:115–135

    Article  MATH  Google Scholar 

  • Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. J Fluid Mech 14:136–157

    Article  MATH  Google Scholar 

  • Singh RK, Li X, Sarkar K (2014) Lateral migration of a capsule in plane shear near a wall. J Fluid Mech 739:421–443

    Article  Google Scholar 

  • Song W-J, Du J-Z, Sun T, Zhang P-Z, Wang J (2010) Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small 6:239–246

    Article  Google Scholar 

  • Squires TM, Messinger RJ, Manalis SR (2008) Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol 26:417

    Article  Google Scholar 

  • Teste B, Vial J, Descroix S, Georgelin T, Siaugue J-M, Petr J, Varenne A, Hennion M-C (2010) A chemometric approach for optimizing protein covalent immobilization on magnetic core-shell nanoparticles in view of an alternative immunoassay. Talanta 81:1703–1710

    Article  Google Scholar 

  • Teste B, Kanoufi F, Descroix S, Poncet P, Georgelin T, Siaugue J-M, Petr J, Varenne A, Hennion M-C (2011) Kinetic analyses and performance of a colloidal magnetic nanoparticle based immunoassay dedicated to allergy diagnosis. Anal Bioanal Chem 400:3395–3407

    Article  Google Scholar 

  • Teste B, Malloggi F, Siaugue J-M, Varenne A, Kanoufi F, Descroix S (2011) Microchip integrating magnetic nanoparticles for allergy diagnosis. Lab Chip 11:4207–4213

    Article  Google Scholar 

  • Tulukguoglu E, Bureau C, Perez-Toralla K, Descroix S, Malaquin L, Pierga J, Bidard F, Viovy J (2014) A microfluidic CTC sorting strategy using self-assembled magnetic particles. Anticancer Res 34:6233–6234

  • van der Maaden K, Sliedregt K, Kros A, Jiskoot W, Bouwstra J (2012) Fluorescent nanoparticle adhesion assay: a novel method for surface pK a determination of self-assembled monolayers on silicon surfaces. Langmuir 28:3403–3411

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Yahiaoui S, Feuillebois F (2010) Lift on a sphere moving near a wall in a parabolic flow. J Fluid Mech 662:447–474

    Article  MATH  Google Scholar 

  • Zebda A, Renaud L, Cretin M, Innocent C, Pichot F, Ferrigno R, Tingry S (2009) Electrochemical performance of a glucose/oxygen microfluidic biofuel cell. J Power Sources 193:602–606

    Article  Google Scholar 

  • Zhou J, Papautsky I (2013) Fundamentals of inertial focusing in microchannels. Lab Chip 13:1121–1132

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CNRS, Université de Rennes 1, ENS de Rennes, Région Bretagne, Rennes Métropole and Agence Nationale de la Recherche (ANR) under the Grant ANR-18-CE09-0029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Caroline Jullien.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1111 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mottin, D., Razan, F., Kanoufi, F. et al. Influence of lift forces on particle capture on a functionalized surface. Microfluid Nanofluid 25, 89 (2021). https://doi.org/10.1007/s10404-021-02488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-021-02488-x

Keyword

Navigation