Skip to main content
Log in

Optical Nanoimpacts of Dielectric and Metallic Nanoparticles on Gold Surface by Reflectance Microscopy: Adsorption or Bouncing?

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Optical modeling coupled to experiments show that a microscope operating in reflection mode allows imaging, through solutions or even a microfluidic cover, various kinds of nanoparticles, NPs, over a (reflecting) sensing surface, here a gold (Au) surface. Optical modeling suggests that this configuration enables the interferometric imaging of single NPs which can be characterized individually from local change in the surface reflectivity. The interferometric detection improves the optical limit of detection compared to classical configurations exploiting only the light scattered by the NPs. The method is then tested experimentally, to monitor in situ and in real time, the collision of single Brownian NPs, or optical nanoimpacts, with an Au-sensing surface. First, mimicking a microfluidic biosensor platform, the capture of 300 nm FeOx maghemite NPs from a convective flow by a surface-functionalized Au surface is dynamically monitored. Then, the adsorption or bouncing of individual dielectric (100 nm polystyrene) or metallic (40 and 60 nm silver) NPs is observed directly through the solution. The influence of the electrolyte on the ability of NPs to repetitively bounce or irreversibly adsorb onto the Au surface is evidenced. Exploiting such visualization mode of single-NP optical nanoimpacts is insightful for comprehending single-NP electrochemical studies relying on NP collision on an electrode (electrochemical nanoimpacts).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: a
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bard AJ, Mirkin MV, editors. Scanning electrochemical microscopy. 2nd ed. Boca Raton: CRC Press; 2012.

    Google Scholar 

  2. Bentley CL, Kang M, Unwin PR. Scanning electrochemical cell microscopy: new perspectives on electrode processes in action. Curr Opin Electrochem. 2017;6:23–30.

    Article  CAS  Google Scholar 

  3. Shan XN, Patel U, Wang SP, Iglesias R, Tao NJ. Imaging local electrochemical current via surface plasmon resonance. Science. 2010;327:1363–6.

    Article  CAS  PubMed  Google Scholar 

  4. Shan XN, Diez-Perez I, Wang LJ, Wiktor P, Gu Y, Zhang LH, Wang W, Lu J, Wang SP, Gong QH, Li JH, Tao NJ. Imaging the electrocatalytic activity of single nanoparticles. Nat Nanotech. 2012;7:668–72.

    Article  CAS  Google Scholar 

  5. Fang YM, Wang W, Wo X, Luo YS, Yin SW, Wang YX, Shan XN, Tao NJ. Plasmonic imaging of electrochemical oxidation of single nanoparticles. J Am Chem Soc. 2014;136:12584–7.

    Article  CAS  PubMed  Google Scholar 

  6. Yuan T, Wang W. Studying the electrochemistry of single nanoparticles with surface plasmon resonance microscopy. Curr Opin Electrochem. 2017;1:17–22.

    Article  CAS  Google Scholar 

  7. Nizamov S, Kasian O, Mirsky VM. Individual detection and electrochemically assisted identification of adsorbed nanoparticles by using surface plasmon microscopy. Angew Chem Int Ed. 2016;55:7247–51.

    Article  CAS  Google Scholar 

  8. Nizamov S, Scherbahn V, Mirsky VM. Detection and quantification of single engineered nanoparticles in complex samples using template matching in wide-field surface plasmon microscopy. Anal Chem. 2016;88:10206–14.

    Article  CAS  PubMed  Google Scholar 

  9. Peng Y, Xiong B, Peng L, Li H, He Y, Yeung ES. Recent advances in optical imaging with anisotropic plasmonic nanoparticles. Anal Chem. 2015;87:200–15.

    Article  CAS  PubMed  Google Scholar 

  10. Jing C, Reichert J. Nanoscale electrochemistry in the “dark-field”. Curr Opin Electrochem. 2017;6:10–6.

    Article  CAS  Google Scholar 

  11. Brasiliense V, Berto P, Combellas C, Tessier G, Kanoufi F. Electrochemistry of single nanodomains revealed by three-dimensional holographic microscopy. Acc Chem Res. 2016;49:2049–57.

    Article  CAS  PubMed  Google Scholar 

  12. Brasiliense V, Patel AN, Martinez-Marrades A, Shi J, Chen Y, Combellas C, Tessier G, Kanoufi F. Correlated electrochemical and optical detection reveals the chemical reactivity of individual silver nanoparticles. J. Am Chem Soc. 2016;138:3478–83.

    Article  CAS  PubMed  Google Scholar 

  13. Patel AN, Martinez-Marrades A, Brasiliense V, Koshelev D, Besbes M, Kuszelewicz R, Combellas C, Tessier G, Kanoufi F. Deciphering the elementary steps of transport-reaction processes at individual Ag nanoparticles by 3D superlocalization microscopy. Nano Lett. 2015;15:6454–63.

    Article  CAS  PubMed  Google Scholar 

  14. Batchelor-McAuley C, Martinez-Marrades A, Tschulik K, Patel AN, Combellas C, Kanoufi F, Tessier G, Compton RG. Simultaneous electrochemical and 3D optical imaging of silver nanoparticle oxidation. Chem Phys Lett. 2014;597:20–5.

    Article  CAS  Google Scholar 

  15. Munteanu S, Garraud N, Roger JP, Amiot F, Shi J, Chen Y, Combellas C, Kanoufi F. In situ, real time monitoring of surface transformation: ellipsometric microscopy imaging of electrografting at microstructured gold surfaces. Anal Chem. 2013;85:1965–71.

    Article  CAS  PubMed  Google Scholar 

  16. Munteanu S, Roger JP, Fedala Y, Amiot F, Combellas C, Tessier G, Kanoufi F. Mapping fluxes of radicals from the combination of electrochemical activation and optical microscopy. Faraday Discuss. 2013;164:241–58.

    Article  CAS  PubMed  Google Scholar 

  17. Fedala Y, Munteanu S, Kanoufi F, Tessier G, Roger JP, Wu C, Amiot F. Calibration procedures for quantitative multiple wavelengths reflectance microscopy. Rev Sci Instrum. 2016;87:013702.

    Article  CAS  PubMed  Google Scholar 

  18. Chakri S, Patel AN, Frateur I, Kanoufi F, Sutter EM, Mai Tran TT, Tribollet B, Vivier V. Imaging of a thin oxide film formation from the combination of surface reflectivity and electrochemical methods. Anal Chem. 2017;89:5303–10.

    Article  CAS  PubMed  Google Scholar 

  19. van Dijk MA, Lippitz M, Orrit M. Far-field optical microscopy of single metal nanoparticles. Acc Chem Res. 2005;38:594–601.

    Article  CAS  PubMed  Google Scholar 

  20. van Dijk MA, Lippitz M, Stolwijk D, Orrit M. A common-path interferometer for time-resolved and shot-noise-limited detection of single nanoparticles. Opt Express. 2007;15:2273–87.

    Article  PubMed  Google Scholar 

  21. Lindfors K, Kalkbrenner T, Stoller P, Sandoghdar V. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys Rev Lett. 2004;93:037401.

    Article  CAS  PubMed  Google Scholar 

  22. Kukura P, Ewers H, Müller C, Renn A, Helenius A, Sandoghdar V. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods. 2009;6:923–7.

    Article  CAS  PubMed  Google Scholar 

  23. Ortega-Arroyo J, Kukura P. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys Chem Chem Phys. 2012;14:15625–36.

    Article  CAS  PubMed  Google Scholar 

  24. Sevenler D, Avci O, Ünlü MS. Quantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticles. Biomed Opt Express. 2017;8:2976–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Avci O, Adato R, Ozkumur AY, Ünlü MS. Physical modeling of interference enhanced imaging and characterization of single nanoparticles. Opt Express. 2016;24:6094–114.

    Article  PubMed  Google Scholar 

  26. Avci O, Ünlü NL, Ozkumur AY, Ünlü MS. Interferometric reflectance imaging sensor (iris) - a platform technology for multiplexed diagnostics and digital detection. Sensors. 2015;15:17649–65.

    Article  CAS  PubMed  Google Scholar 

  27. Boccara M, Fedala Y, Bryan CV, Bailly-Bechet M, Bowler C, Boccara C. Full-field interferometry for counting and differentiating aquatic biotic nanoparticles: from laboratory to Tara Oceans. Biomed. Opt Express. 2016;7:3736–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lemineur J-F, Noël J-M, Ausserré D, Combellas C, Kanoufi F. Combining electrodeposition and optical microscopy for probing size-dependent single-nanoparticle electrochemistry. Angew Chem Int Ed. 2018;57:11998–2002.

    Article  CAS  Google Scholar 

  29. Lemineur J-F, Noël J-M, Combellas C, Ausserré D, Kanoufi F. The promise of antireflective gold electrodes for optically monitoring the electrodeposition of single silver nanoparticles. Faraday Discuss. 2018;210:381–95.

    Article  CAS  PubMed  Google Scholar 

  30. Stockmann TJ, Lemineur J-F, Liu H, Cometto C, Robert M, Combellas C, Kanoufi F. Single LiBH4 nanocrystal stochastic impacts at a micro water vertical bar ionic liquid interface. Electrochim Acta. 2019;299:222–30.

    Article  CAS  Google Scholar 

  31. Squires TM, Messinger RJ, Manalis SR. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotech. 2008;26:417–26.

    Article  CAS  Google Scholar 

  32. Xiao X, Bard AJ. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am Chem Soc. 2007;129:9610–2.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou YG, Rees NV, Compton RG. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew Chem Int Ed. 2011;50:4219–21.

    Article  CAS  Google Scholar 

  34. Sokolov SV, Eloul S, Kätelhön E, Batchelor-McAuley C, Compton RG. Electrode-particle impacts: a users guide. Phys Chem Chem Phys. 2017;19:28–43.

    Article  CAS  Google Scholar 

  35. Garcia de Abajo FJ, Howie A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys Rev B. 2002;65:115418.

    Article  CAS  Google Scholar 

  36. Hohenester U, Trügler A. MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput Phys Commun. 2012;183:370–81.

    Article  CAS  Google Scholar 

  37. Waxenegger J, Hohenester U, Trügler A. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comput Phys Commun. 2015;193:138–50.

    Article  CAS  Google Scholar 

  38. MNPBEM toolbox. 2018. http://physik.uni-graz.at/mnpbem/. Accessed 20 Dec 2018.

  39. Codes developed for the SP-IRIS. 2018. https://github.com/derinsevenler/SP-IRIS-BEM. Accessed 20 Dec 2018.

  40. Refractive index values are tabulated. 2018. https://refractiveindex.info/. Accessed 20 Dec 2018.

  41. Brasiliense V, Berto P, Aubertin P, Maisonhaute E, Combellas C, Tessier G, Courty A, Kanoufi F. Light driven design of dynamical thermosensitive plasmonic superstructures: a bottom-up approach using silver supercrystals. ACS Nano. 2018;12:10833–42.

    Article  CAS  PubMed  Google Scholar 

  42. Wang W, Tao NJ. Detection, counting, and imaging of single nanoparticles. Anal Chem. 2014;86:2–14.

    Article  CAS  PubMed  Google Scholar 

  43. Wo X, Li Z, Jiang Y, Li M, Su Y-W, Wang W, Tao NJ. Determining the absolute concentration of nanoparticles without calibration factor by visualizing the dynamic processes of interfacial adsorption. Anal Chem. 2016;88:2380–5.

    Article  CAS  PubMed  Google Scholar 

  44. Kuzmichev A, Skolnik J, Zybin A, Hergenröder R. Absolute analysis of nanoparticle suspension with surface plasmon microscopy. Anal Chem. 2018;90:10732–7.

    Article  CAS  PubMed  Google Scholar 

  45. Newman J. The fundamental principles of current distribution and mass transport in electrochemical cells. In: Bard AJ, editor. Electroanalytical chemistry, vol. 6. New York: Dekker; 1973. p. 279–97.

    Google Scholar 

  46. Fuchs A, Fermigier M, Combellas C, Kanoufi F. Scanning electrochemical microscopy. Hydrodynamics generated by the motion of a scanning tip and its consequences on the tip current. Anal Chem. 2005;77:7966–75.

    Article  CAS  PubMed  Google Scholar 

  47. Quinn BM, van’t Ho PG, Lemay SG. Time-resolved electrochemical detection of discrete adsorption events. J Am Chem Soc. 2004;126:8360–1.

    Article  CAS  PubMed  Google Scholar 

  48. Boika A, Thorgaard SN, Bard AJ. Monitoring the electrophoretic migration and adsorption of single insulating nanoparticles at ultramicroelectrodes. J Phys Chem B. 2013;117:4371–80.

    Article  CAS  PubMed  Google Scholar 

  49. Suraniti E, Kanoufi F, Gosse C, Zhao X, Dimova R, Pouligny B, Sojic N. Electrochemical detection of single microbeads manipulated by optical tweezers in the vicinity of ultramicroelectrodes. Anal Chem. 2013;85:8902–9.

    Article  CAS  PubMed  Google Scholar 

  50. Fosdick SE, Anderson MJ, Nettleton EG, Crooks RM. Correlated electrochemical and optical tracking of discrete collision events. J Am Chem Soc. 2013;135:5994–7.

    Article  CAS  PubMed  Google Scholar 

  51. Oja SM, Robinson DA, Vitti NJ, Edwards MA, Liu Y, White HS, Zhang B. Observation of multipeak collision behavior during the electro-oxidation of single Ag nanoparticles. J Am Chem Soc. 2017;139:708–18.

    Article  CAS  PubMed  Google Scholar 

  52. Ma W, Ma H, Chen JF, Peng Y-Y, Yang Z-Y, Wang H-F, Ying Y-L, Tian H, Long Y-T. Tracking motion trajectories of individual nanoparticles using time-resolved current traces. Chem Sci. 2017;8:1854–61.

    Article  CAS  PubMed  Google Scholar 

  53. Ustarroz J, Kang M, Bullions E, Unwin PR. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events. Chem Sci. 2017;8:1841–53.

    Article  CAS  PubMed  Google Scholar 

  54. Robinson DA, Liu Y, Edwards MA, Vitti NJ, Oja SM, Zhang B, White HS. Collision dynamics during the electrooxidation of individual silver nanoparticles. J Am Chem Soc. 2017;139:16923–31.

    Article  CAS  PubMed  Google Scholar 

  55. Sun L, Fang Y, Li Z, Wang W, Chen H-Y. Simultaneous optical and electrochemical recording of single nanoparticle electrochemistry. Nano Res. 2017;10:1740–8.

    Article  Google Scholar 

  56. Sun L, Wang W, Chen H-Y. Dynamic nanoparticle-substrate contacts regulate multi-peak behavior of single silver nanoparticle collisions. ChemElectroChem. 2018;5:2995–9.

    Article  CAS  Google Scholar 

  57. Hao R, Fan Y, Zhang B. Imaging dynamic collision and oxidation of single silver nanoparticles at the electrode/solution interface. J Am Chem Soc. 2017;139:12274–82.

    Article  CAS  PubMed  Google Scholar 

  58. Robinson DA, Kondajji AM, Castañeda AD, Dasari R, Crooks RM, Stevenson KJ. Addressing colloidal stability for unambiguous electroanalysis of single nanoparticle impacts. J Phys Chem Lett. 2016;7:2512–7.

    Article  CAS  PubMed  Google Scholar 

  59. Sokolov SV, Tschulik K, Batchelor-McAuley C, Jurkschat K, Compton RG. Reversible or not? Distinguishing agglomeration and aggregation at the nanoscale. Anal Chem. 2015;87:10033–9.

    Article  CAS  PubMed  Google Scholar 

  60. Sundaresan V, Monaghan JW, Willets KA. Visualizing the effect of partial oxide formation on single silver nanoparticle electrodissolution. J Phys Chem C. 2018;122:3138–45.

    Article  CAS  Google Scholar 

  61. Smith JG, Jain PK. The ligand shell as an energy barrier in surface reactions on transition metal nanoparticles. J Am Chem Soc. 2016;138:6765–73.

    Article  CAS  PubMed  Google Scholar 

  62. Eloul S, Compton RG. Shielding of a microdisc electrode surrounded by an adsorbing surface. ChemElectroChem. 2014;1:917–24.

    Article  CAS  Google Scholar 

  63. Di N, Damian A, Maroun F, Allongue P. Influence of potential on the electrodeposition of co on Au(111) by in situ stm and reflectivity measurements. J Electrochem Soc. 2016;163:D3062–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support by the Agence Nationale pour la Recherche (NEOCASTIP ANR-15-CE09-0015-02 project) and Direction Générale de l’Armement (AMMIB ANR-13-ASTR-0021-01), by Universities Paris Diderot and Paris Sud and by CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Kanoufi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemineur, JF., Stockmann, T.J., Médard, J. et al. Optical Nanoimpacts of Dielectric and Metallic Nanoparticles on Gold Surface by Reflectance Microscopy: Adsorption or Bouncing?. J. Anal. Test. 3, 175–188 (2019). https://doi.org/10.1007/s41664-019-00099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00099-8

Keywords

Navigation