Skip to main content
Log in

Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Fluid flows in microchannels with microcavities at low Reynolds number are increasingly used in microfluidic applications such as trapping and sorting of cells and particles. For optimizing the microcavity configuration and better controlling the microenvironment in the microcavities, it is important to thoroughly understand the flow behaviors in the microcavities. Hence, using microparticle image velocimetry (μPIV), we investigated quantitatively the flow characteristics of rectangular microcavities with a wide range of aspect ratio (λ = 0.25–3) and Reynolds numbers (Re = 0–100). Depending on the control parameters (Re and λ), a flow regime map in microcavities has been constructed, including three different flow patterns: attached flow, separated flow, and transitional flow. The critical parameters for the transform of flow patterns were determined. Only a single central microvortex appears in the microcavities, and the evolution and characteristics of the microvortex were investigated in detail. The results revealing the flow mechanism of different flow patterns in the rectangular microcavities can provide useful design guidelines of microfluidic-based devices, as well as a map to help microfluidic users in their design of application-driven microcavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bourdon CJ, Olsen MG, Gorby AD (2006) The depth of correlation in micro-PIV for high numerical aperture and immersion objectives. J Fluids Eng 128:883–886

    Article  Google Scholar 

  • Chiang TP, Sheu WH, Hwang RR (1996) Finite volume analysis of spiral motion in a rectangular lid-driven cavity. Int J Numer Methods Fluids 23:325–346

    Article  MATH  Google Scholar 

  • Chiu D (2007) Cellular manipulations in microvortices. Anal Bioanal Chem 387:17–20

    Article  Google Scholar 

  • Cioffi M, Moretti M, Manbachi A, Chung BG, Khademhosseini A, Dubini G (2010) A computational and experimental study inside microfluidic systems: the role of shear stress and flow recirculation in cell docking. Biomed Microdevices 12:619–626

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • Fan LL, He XK, Han Y, Du L, Zhao L, Zhe J (2014) Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures. Biomicrofluidics 8(2):024108

    Article  Google Scholar 

  • Fishler R, Mulligan MK, Sznitman J (2013) Mapping low-Reynolds-number microcavity flows using microfluidic screening devices. Microfluid Nanofluidics 15:491–500

    Article  Google Scholar 

  • He K, Retterer ST, Srijanto BR, Conrad JC, Krishnamoorti R (2014) Transport and dispersion of nanoparticles in periodic nanopost arrays. ACS Nano 8:4221–4227

    Article  Google Scholar 

  • Heaton CJ (2008) On the appearance of moffatt eddies in viscous cavity flow as the aspect ratio varies. Phys Fluids 20:103102–103111

    Article  Google Scholar 

  • Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274–280

    Article  Google Scholar 

  • Hur SC, Mach AJ, Di Carlo D (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5:022206

    Article  Google Scholar 

  • Jang YH, Kwon CH, Kim SB, Selimović Š, Sim WY, Bae H, Khademhosseini A (2011) Deep wells integrated with microfluidic valves for stable docking and storage of cells. Biotechnol J 6(2):156–164

    Article  Google Scholar 

  • Karimi A, Yazdi S, Ardekani AM (2013) Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7:021501

    Article  Google Scholar 

  • Khabiry M, Chung B, Hancock M, Soundararajan H, Du Y, Cropek D, Lee W, Khademhosseini A (2009) Cell docking in double grooves in a microfluidic channel. Small 5:1186–1194

    Google Scholar 

  • Lima R, Wada S, Tanaka S, Takeda M, Ishikawa T, Tsubota K, Imai Y, Yamaguchi T (2008) In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed Microdevices 10:153–167

    Article  Google Scholar 

  • Lindken R, Rossi M, Große S, Westerweel J (2009) Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines. Lab Chip 9:2551–2567

    Article  Google Scholar 

  • Lindström S, Andersson-Svahn H (2010) Overview of single-cell analyses: microdevices and applications. Lab Chip 10:3363–3372

    Article  Google Scholar 

  • Liu K, Pitchimani R, Dang D, Bayer K, Harrington T, Pappas D (2008) Cell culture chip using low-shear mass transport. Langmuir 24:5955–5960

    Article  Google Scholar 

  • Liu K, Tian Y, Burrows SM, Reif RD, Pappas D (2009) Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy. Anal Chim Acta 651:85–90

    Article  Google Scholar 

  • Luo CX, Li H et al (2007) The combination of optical tweezers and microwell array for cell manipulation and cultivation in microfluidic device. Biomed Microdevices 9:573–578

    Article  Google Scholar 

  • Mach AJ, Kim JH, Arshi A, Hur SC, Di Carlo D (2011) Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 11:2827–2834

    Article  Google Scholar 

  • Manbachi A, Shrivastava S et al (2008) Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels. Lab Chip 8:747–754

    Article  Google Scholar 

  • Meinhart CD, Wereley ST, Santiago JG (1999) PIV measurements of a microchannel flow. Exp Fluids 27:414–419

    Article  Google Scholar 

  • Moffatt HK (1964) Viscous and resistive eddies near a sharp corner. J Fluid Mech 18:1–18

    Article  MATH  Google Scholar 

  • Mu X, Zheng WF, Sun JS, Zhang W, Jiang XY (2013) Microfluidics for manipulating cells. Small 9(1):9–21

    Article  Google Scholar 

  • Nguyen N, Wereley S (2002) Fundamentals and applications of microfluidics. Artech House Inc, Norwood

    MATH  Google Scholar 

  • Nilsson J, Evander M, Hammarström B, Laurell T (2009) Review of cell and particle trapping in microfluidic systems. Anal Chim Acta 649(2):141–157

    Article  Google Scholar 

  • O’Brien V (1972) Closed streamlines associated with channel flow over a cavity. Phys Fluids 15:2089–2097

    Article  MATH  Google Scholar 

  • Park JS, Song SH, Jung HI (2009) Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 9:939–948

    Article  Google Scholar 

  • Park JY, Morgan M, Sachs AN, Samorezov J, Teller R, Shen Y, Pienta KJ, Takayama S (2010) Single cell trapping in larger microwells capable of supporting cell spreading and proliferation. Microfluid Nanofluidics 8:263–268

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry-a practical guide, 2nd edn. Springer, Berlin

    Google Scholar 

  • Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181–189

    Article  Google Scholar 

  • Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319

    Article  Google Scholar 

  • Shah RK, London AL (1978) Laminar flow forced convection in ducts. Academic Press, New York

    Google Scholar 

  • Shankar PN (1997) Three-dimensional eddy structure in a cylindrical container. J Fluids Mech 342:97–118

    Article  MATH  Google Scholar 

  • Shankar PN, Deshpande MD (2000) Fluid mechanics in the driven cavity. Annu Rev Fluid Mech 32:93–136

    Article  MathSciNet  Google Scholar 

  • Shelby JP, Lim DSW, Kuo JS, Chiu DT (2003) Microfluidic systems: high radial acceleration in microvortices. Nature 425:38

    Article  Google Scholar 

  • Shen C, Floryan JM (1985) Low Reynolds number flow over cavities. Phys Fluids 28:3191–3202

    Article  MATH  MathSciNet  Google Scholar 

  • Shen F, Li XJ, Li PCH (2014) Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations. Biomicrofluidics 8:014109

    Article  Google Scholar 

  • Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J (2009) Microfluidic control of cell pairing and fusion. Nat Methods 6:147–152

    Article  Google Scholar 

  • Stone SW, Meinhart CD, Wereley ST (2002) A microfluidic-based nanoscope. Exp Fluids 33:613–619

    Article  Google Scholar 

  • Tanyeri M, Schroeder CM (2013) Manipulation and confinement of single particles using fluid flow. Nano Lett 13:2357–2364

    Article  Google Scholar 

  • Wereley ST, Meinhart CD (2010) Recent advances in micro-particle image velocimetry. Annu Rev Fluid Mech 42:557–576

    Article  Google Scholar 

  • Willert C, Raffel M, Kompenhans J, Stasicki B, Kahler C (1996) Recent applications of particle image velocimetry in aerodynamic research. Flow Meas Instrum 7:247–256

    Article  Google Scholar 

  • Williams SJ, Park C, Wereley ST (2010) Advances and applications on microfluidic velocimetry techniques. Microfluid Nanofluidics 8:709–726

    Article  Google Scholar 

  • Yew AG, Pinero D, Hsieh AH, Atencia J (2013) Low peclet number mass and momentum transport in microcavities. Appl Phys Lett 102:084108

    Article  Google Scholar 

  • Yu ZTF, Lee YK, Wong M, Zohar Y (2005) Fluid flows in microchannels with cavities. J Microelectromech Syst 14:1386–1398

    Article  Google Scholar 

  • Yun H, Kim K, Lee WG (2013) Cell manipulation in microfluidics. Biofabrication 5:022001

    Article  Google Scholar 

  • Zhou J, Kasper S, Papautsky I (2013) Enhanced size-dependent trapping of particles using microvortices. Microfluid Nanofluidics 15:611–623

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (11002007 and 11072011), Beijing Natural Science Foundation (7152012), and Training Plan of New Talent of Beijing University of Technology (2015-RX-L02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaomiao Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Xiao, P. & Liu, Z. Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number. Microfluid Nanofluid 19, 403–417 (2015). https://doi.org/10.1007/s10404-015-1575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1575-3

Keywords

Navigation