Skip to main content
Log in

From flow focusing to vortex formation in crossing microchannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The paper is concerned with the experimental and numerical investigations of the vortex formation and flow focusing inside a cross-shaped microchannel domain. The local hydrodynamics in the junction area, upstream of the focusing region, is analyzed with the aim to characterize the onset and the evolution of the vortical structures, in correlation with the operating parameters. The numerical simulations based on a finite-volume approach are validated by direct flow visualizations using epifluorescence and confocal microscopy. The main result of the study is a flow pattern map, providing comprehensive information on the flow dynamics inside the microchannel junction as a function of the input flow rates and the corresponding Reynolds numbers. The flow pattern map identifies the limits of the flow focusing regime and the critical values of the parameters at which the vortical structures are formed. Beyond the breakdown of the classical flow focusing scenario with one focused output stream, flow patterns with two and four output streams are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson JD, Degroote J, Degrez G, Dick E, Grundmann R, Vierendeels J (2009) Computational fluid dynamics. Springer, Berlin. doi:10.1007/978-3-540-85056-4

    Google Scholar 

  • Bǎlan CM, Broboanǎ D, Bǎlan C (2012) Investigations of vortex formation in microbifurcations. Microfluid Nanofluid 13:819–833. doi:10.1007/s10404-012-1005-8

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Inertial microfluidics for continuous particle filtration and extraction. Microfluid Nanofluid 7:217–226. doi:10.1007/s10404-008-0377-2

    Article  MATH  Google Scholar 

  • Bothe D, Stemich C, Warnecke HJ (2006) Fluid mixing in a T-shaped micro-mixer. Chem Eng Sci 61:2950–2958. doi:10.1016/j.ces.2005.10.060

    Article  Google Scholar 

  • Bothe D, Lojewski A, Warnecke HJ (2011) Fully resolved numerical simulation of reactive mixing in a T-shaped micromixer using parabolized species equations. Chem Eng Sci 66:6424–6440. doi:10.1016/j.ces.2011.08.045

    Article  Google Scholar 

  • Brennich ME, Köster S (2013) Tracking reactions in microflow. Microfluid Nanofluid 16:39–45. doi:10.1007/s10404-013-1212-y

    Article  Google Scholar 

  • Carlotto S, Fortunati I, Ferrante C, Schwille P, Polimeno A (2010) Time correlated fluorescence characterization of an asymmetrically focused flow in a microfluidic device. Microfluid Nanofluid 10:551–561. doi:10.1007/s10404-010-0689-x

    Article  Google Scholar 

  • Engler M, Kockmann N, Kiefer T, Woias P (2004) Convective mixing and its applications to micro reactors. In: Proceedings of ICMM2004-2412. pp 781–788. doi: 10.1115/ICMM2004-2412

  • Fan L-L, Han Y, He X-K, Zhao L, Zhe J (2014) High-throughput, single-stream microparticle focusing using a microchannel with asymmetric sharp corners. Microfluid Nanofluid 17:639–646. doi:10.1007/s10404-014-1344-8

    Article  Google Scholar 

  • Ferziger JH, Peric M (2002) Computational methods for fluid dynamics. Springer, Berlin. doi:10.1007/978-3-642-56026-2

  • FLUENT6.3 Doc. User’s Manual, 2006 Fluent Incorporated, Lebanon, New Hampshire

  • Fu T, Wu Y, Ma Y, Li HZ (2012) Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting. Chem Eng Sci 84:207–217. doi:10.1016/j.ces.2012.08.039

    Article  Google Scholar 

  • Golden JP, Justin GA, Nasir M, Ligler FS (2012) Hydrodynamic focusing-a versatile tool. Anal Bioanal Chem 402:325–335. doi:10.1007/s00216-011-5415-3

    Article  Google Scholar 

  • Ha BH, Lee KS, Jung JH, Sung HJ (2014) Three-dimensional hydrodynamic flow and particle focusing using four vortices Dean flow. Microfluid Nanofluid. doi:10.1007/s10404-014-1346-6

    Google Scholar 

  • Haward SJ, Poole RJ, Alves MA, Oliviera PJ, Goldenfeld N, Shen AQ (2016) Tricritical spiral vortex instability in cross-slot flow. Phys Rev E 93:031101(R). doi:10.1103/PhysRevE.93.031101

    Article  Google Scholar 

  • Hoffmann M, Schlüter M, Räbiger N (2006) Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV. Chem Eng Sci 61:2968–2976. doi:10.1016/j.ces.2005.11.029

    Article  Google Scholar 

  • Hong JS, Stavis SM, Depaoli Lacerda SH, Locascio LE, Raghavan SR, Gaitan M (2010) Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles. Langmuir 26:11581–11588. doi:10.1021/la100879p

    Article  Google Scholar 

  • Hsu WL, Inglis DW, Jeong H, Dunstan DE, Davidson MR, Goldys EM, Harvie DJE (2014) Stationary chemical gradients for concentration gradient-based separation and focusing in nanofluidic channels. Langmuir 30:5337–5348. doi:10.1021/la500206b

    Article  Google Scholar 

  • Iliescu C, Mărculescu C, Venkataraman S, Languille B, Yu H, Tresset G (2014) On-Chip Controlled Surfactant–DNA Coil-Globule Transition by Rapid Solvent Exchange Using Hydrodynamic Flow Focusing. Langmuir 30:13125–13136. doi:10.1021/la5035382

    Article  Google Scholar 

  • Jahn A, Vreeland WN, Devoe DL, Locascio LE, Gaitan M (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293. doi:10.1021/la070051a

    Article  Google Scholar 

  • Jahn A, Lucas F, Wepf RA, Dittrich PS (2013) Freezing continuous-flow self-Assembly in a microfluidic device: toward imaging of liposome formation. Langmuir 29:1717–1723. doi:10.1021/la303675g

    Article  Google Scholar 

  • Kennedy MJ, Stelick SJ, Perkins SL, Cao L, Batt CA (2009) Hydrodynamic focusing with a microlithographic manifold: controlling the vertical position of a focused sample. Microfluid Nanofluid 7:569–578. doi:10.1007/s10404-009-0417-6

    Article  Google Scholar 

  • Kockmann N, Kiefer T, Engler M, Woias P (2006) Convective mixing and chemical reactions in microchannels with high flow rates. Sens Actuators B Chem 117:495–508. doi:10.1016/j.snb.2006.01.004

    Article  Google Scholar 

  • Kockmann N, Dreher S, Woias P (2007) Unsteady laminar flow regimes and mixing in T-shaped micromixers. In: ASME 5th international conference on nanochannels, microchannels, minichannels. pp 671–678. doi: 10.1115/ICNMM2007-30041

  • Kunstmann-Olsen C, Hoyland JD, Rubahn H-G (2011) Influence of geometry on hydrodynamic focusing and long-range fluid behavior in PDMS microfluidic chips. Microfluid Nanofluid 12:795–803. doi:10.1007/s10404-011-0923-1

    Article  Google Scholar 

  • Lee MG, Choi S, Park J-K (2009) Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab Chip 9:3155–3160. doi:10.1039/b910712f

    Article  Google Scholar 

  • Lin S-C, Yen P-W, Peng C-C, Tung Y-C (2012) Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing. Lab Chip 12:3135. doi:10.1039/c2lc40246g

    Article  Google Scholar 

  • Maenaka H, Yamada M, Yasuda M, Seki M (2008) Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Langmuir 24:4405–4410. doi:10.1021/la703581j

    Article  Google Scholar 

  • Mijajlovic M, Wright D, Zivkovic V, Bi JX, Biggs MJ (2013) Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems. Colloids Surfaces B Biointerfaces 104:276–281. doi:10.1016/j.colsurfb.2012.12.020

    Article  Google Scholar 

  • Nasir M, Mott DR, Kennedy MJ, Golden JP, Ligler FS (2011) Parameters affecting the shape of a hydrodynamically focused stream. Microfluid Nanofluid 11:119–128. doi:10.1007/s10404-011-0778-5

    Article  Google Scholar 

  • Oliveira MSN, Pinho FT, Alves MA (2012) Divergent streamlines and free vortices in Newtonian fluid flows in microfluidic flow-focusing devices. J Fluid Mech 711:171–191. doi:10.1017/jfm.2012.386

    Article  MathSciNet  MATH  Google Scholar 

  • Rodriguez-Trujillo R, Mills CA, Samitier J, Gomila G (2006) Low cost micro-Coulter counter with hydrodynamic focusing. Microfluid Nanofluid 3:171–176. doi:10.1007/s10404-006-0113-8

    Article  Google Scholar 

  • Rondeau E, Cooper-White JJ (2008) Biopolymer microparticle and nanoparticle formation within a microfluidic device. Langmuir 24:6937–6945. doi:10.1021/la703339u

    Article  Google Scholar 

  • Schabas G, Yusuf H, Moffitt MG, Sinton D (2008) Controlled self-assembly of quantum dots and block copolymers in a microfluidic device. Langmuir. doi:10.1021/la703297q

    Google Scholar 

  • Soleymani A, Kolehmainen E, Turunen I (2008) Numerical and experimental investigations of liquid mixing in T-type micromixers. Chem Eng J 135:219–228. doi:10.1016/j.cej.2007.07.048

    Article  Google Scholar 

  • Spielman G, Goren SL (1968) Improving Resolution in Coulter Counting by Hydrodynamic Focusing. J Colloids Interface Sci 26:175–182

    Article  Google Scholar 

  • Ushikubo FY, Birribilli FS, Oliveira DRB, Cunha RL (2014) Y- and T-junction microfluidic devices: effect of fluids and interface properties and operating conditions. Microfluid Nanofluid 17:711–720. doi:10.1007/s10404-014-1348-4

    Article  Google Scholar 

  • Wang WH, Zhang ZL, Xie YN, Wang L, Yi S, Liu K, Liu J, Pang DW, Zhao XZ (2007) Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: from plug to sphere. Langmuir 23:11924–11931. doi:10.1021/la701170s

    Article  Google Scholar 

  • Wesseling P (2001) Principles of computational fluid dynamics. Springer, Berlin. doi:10.1007/978-3-642-05146-3

    Book  MATH  Google Scholar 

  • Wong SH, Ward MCL, Wharton CW (2004) Micro T-mixer as a rapid mixing micromixer. Sens Actuators B Chem 100:359–379. doi:10.1016/j.snb.2004.02.008

    Article  Google Scholar 

  • Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluid 9:1–16. doi:10.1007/s10404-010-0602-7

    Article  Google Scholar 

  • Zhang Z, Zhao P, Xiao G, Lin M, Cao X (2008) Focusing-enhanced mixing in microfluidic channels. Biomicrofluidics 2:1–9. doi:10.1063/1.2894313

    Google Scholar 

  • Zhou J, Kasper S, Papautsky I (2013) Enhanced size-dependent trapping of particles using microvortices. Microfluid Nanofluid 15:611–623. doi:10.1007/s10404-013-1176-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. eng. Catalin Marculescu for his assistance in fabrication of the microchannels and also the financial support received from the grant UEFISCDI, projects PN-II-ID-PCE-2012-4-0245/2013 and PN-II-PT-PCCA-2011-3.1-0052. The work of Iulia Rodica Damian was funded by the Sectoral Operational Programme Human Resources Development 2007–2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/132397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Hardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damian, I.R., Hardt, S. & Balan, C. From flow focusing to vortex formation in crossing microchannels. Microfluid Nanofluid 21, 142 (2017). https://doi.org/10.1007/s10404-017-1975-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1975-7

Keywords

Navigation