Skip to main content

Advertisement

Log in

Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a paper-based immunoaffinity platform for separating subsets of extracellular vesicles (EVs). This method is inexpensive, robust, easy-to-use (easy-to-prepare), and compatible with downstream analyses, such as scanning electron microscopy (SEM), enzyme-linked immunosorbent assays (ELISA), and transcriptome analysis. EVs are small membranous vesicles shed from both healthy and diseased cells and contain nucleic acid and protein cargo. EVs have been increasingly recognized as a means of cell–cell communication and hold a great potential for clinical applications. However, current protocols for isolation of EVs are often lengthy, cumbersome and require expensive equipment. Here, we have isolated EVs from small volumes of both human serum and aqueous humor samples using paper-based immunoaffinity devices. Captured EVs were analyzed morphologically using SEM and appeared statistically different in size (p value < 2.4 × 10−22) and circularity (p value < 3.6 × 10−9) between subsets of EVs bearing different surface markers. Assessing the amount of EVs captured using paper-based ELISA using antibodies conjugated to horseradish peroxidase to produce a colorimetric readout was accomplished within 10 min. RNAs contained in EVs can be extracted to provide information for disease management. These paper-based immunoaffinity devices, we believe, open opportunities for a wide range of applications in both basic biology and clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abu Al-Soud W, Jonsson LJ, Radstrom P (2000) Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol 38(1):345–350

    Google Scholar 

  • Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EPA, Scheynius A, Gabrielsson S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179(3):1969–1978

    Article  Google Scholar 

  • Alvarez ML, Khosroheidari M, Ravi RK, DiStefano JK (2012) Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int 82(9):1024–1032. doi:10.1038/ki.2012.256

    Article  Google Scholar 

  • Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski D, Witkin SS (2008) Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol 79(1):12–17. doi:10.1016/j.jri.2008.06.001

    Article  Google Scholar 

  • Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LAA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Resp Cell Mol Biol 31(1):114–121. doi:10.1165/rcmb.2003-0238OC

    Article  Google Scholar 

  • Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887. doi:10.1093/intimm/dxh267

    Article  Google Scholar 

  • Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 338(1–2):21–30. doi:10.1016/j.jim.2008.07.007

    Article  Google Scholar 

  • Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, Carter BS, Breakefield XO, Toner M, Irimia D (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10(4):505–511. doi:10.1039/b916199f

    Article  Google Scholar 

  • Cheng CM, Martinez AW, Gong JL, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Paper-based ELISA. Angew Chem-Int Edit 49(28):4771–4774. doi:10.1002/anie.201001005

    Article  Google Scholar 

  • Cras JJ, Rowe-Taitt CA, Nivens DA, Ligler FS (1999) Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens Bioelectron 14(8–9):683–688

    Article  Google Scholar 

  • Fernandez-Llama P, Khositseth S, Gonzales PA, Star RA, Pisitkun T, Knepper MA (2010) Tamm–Horsfall protein and urinary exosome isolation. Kidney Int 77(8):736–742. doi:10.1038/ki.2009.550

    Article  Google Scholar 

  • Hardy KM, Hoffman EA, Gonzalez P, McKay BS, Stamer WD (2005) Extracellular trafficking of myocilin in human trabecular meshwork cells. J Biol Chem 280(32):28917–28926. doi:10.1074/jbc.M504803200

    Article  Google Scholar 

  • Hoffman EA, Perkumas KM, Highstrom LM, Stamer WD (2009) Regulation of myocilin-associated exosome release from human trabecular meshwork cells. Investiga Ophthalmol Vis Sci 50(3):1313–1318. doi:10.1167/iovs.08-2326

    Article  Google Scholar 

  • Inal JM, Ansa-Addo EA, Stratton D, Kholia S, Antwi-Baffour SS, Jorfi S, Lange S (2012) Microvesicles in health and disease. Arch Immunol Ther Exp 60(2):107–121. doi:10.1007/s00005-012-0165-2

    Article  Google Scholar 

  • Jarujamrus P, Tian JF, Li X, Siripinyanond A, Shiowatana J, Shen W (2012) Mechanisms of red blood cells agglutination in antibody-treated paper. Analyst 137(9):2205–2210. doi:10.1039/c2an15798e

    Article  Google Scholar 

  • Keller S, Ridinger J, Rupp AK, Janssen JWG, Altevogt P (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9. doi:10.1186/1479-5876-9-86

  • Kubota R, Noda S, Wang YM, Minoshima S, Asakawa S, Kudoh J, Mashima Y, Oguchi Y, Shimizu N (1997) A novel myosin-like protein (myocilin) expressed in the connecting cilium of the photoreceptor: molecular cloning, tissue expression, and chromosomal mapping. Genomics 41(3):360–369. doi:10.1006/geno 1997.4682

    Article  Google Scholar 

  • Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, Le Pecq JB (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270(2):211–226

    Article  Google Scholar 

  • Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios A, Sjostrand M, Gabrielsson S, Lotvall J, Valadi H (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9. doi:10.1186/1479-5876-9-9

  • Murthy SK, Sin A, Tompkins RG, Toner M (2004) Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. Langmuir 20(26):11649–11655

    Article  Google Scholar 

  • Perkumas KM, Hoffman EA, McKay BS, Allingham RR, Stamer WD (2007) Myocilin-associated exosomes in human ocular samples. Exp Eye Res 84(1):209–212. doi:10.1016/j.exer.2006.09.020

    Article  Google Scholar 

  • Polansky JR, Nguyen TD (1998) The TIGR gene, pathogenic mechanisms, and other recent advances in glaucoma genetics. Curr Opin Ophthalmol 9(2):15–23

    Article  Google Scholar 

  • Powell HA, Gooding CM, Garrett SD, Lund BM, McKee RA (1994) Proteinase inhibition of the detection of Listeria-monocytogenes in milk using the polymerase chain-reaction. Lett Appl Microbiol 18(1):59–61

    Article  Google Scholar 

  • Raj DAA, Fiume I, Capasso G, Pocsfalvi G (2012) A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. Kidney Int 81(12):1263–1272. doi:10.1038/ki.2012.25

    Article  Google Scholar 

  • Scanu A, Molnarfi N, Brandt KJ, Gruaz L, Dayer JM, Burger D (2008) Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. J Leukoc Biol 83(4):921–927. doi:10.1189/jlb.0807551

    Article  Google Scholar 

  • Stamer WD, Hoffman EA, Luther JM, Hachey DL, Schey KL (2011) Protein profile of exosomes from trabecular meshwork cells. J Proteomics 74(6):796–804. doi:10.1016/j.jprot.2011.02.024

    Article  Google Scholar 

  • Stone EM, Fingert JH, Alward WLM, Nguyen TD, Polansky JR, Sunden SLF, Nishimura D, Clark AF, Nystuen A, Nichols BE, Mackey DA, Ritch R, Kalenak JW, Craven ER, Sheffield VC (1997) Identification of a gene that causes primary open angle glaucoma. Science 275(5300):668–670. doi:10.1126/science.275.5300.668

    Article  Google Scholar 

  • Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21. doi:10.1016/j.ygyno.2008.04.033

    Article  Google Scholar 

  • Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579

    Google Scholar 

  • Thery C, Clayton A, Amigorena S, Raposo G (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. In: Morgan K (ed) Current protocols in cell biology. Wiley, New York pUNIT 3.22

  • Tian JF, Li X, Shen W (2011) Printed two-dimensional micro-zone plates for chemical analysis and ELISA. Lab Chip 11(17):2869–2875. doi:10.1039/c1lc20374f

    Article  Google Scholar 

  • Usami S, Chen HH, Zhao YH, Chien S, Skalak R (1993) Design and construction of a linear shear-stress flow chamber. Ann Biomed Eng 21(1):77–83

    Article  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium-hirsutum L.). Anal Biochem 223(1):7–12. doi:10.1006/abio1994.1538

    Article  Google Scholar 

  • Wiggins RC, Glatfelter A, Kshirsagar B, Brukman J (1986) Procoagulant activity in normal human-urine associated with subcellular particles. Kidney Int 29(2):591–597. doi:10.1038/ki.1986.39

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Taiwan National Science Council grants-NSC 99-2320-B-007-005-MY2 (CC) and NSC 101-2628-E-007-011-MY3 (CMC) and the Veterans General Hospitals and University System of Taiwan Joint Research Program (CC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chihchen Chen or Chao-Min Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1691 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Lin, BR., Wang, HK. et al. Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles. Microfluid Nanofluid 16, 849–856 (2014). https://doi.org/10.1007/s10404-014-1359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1359-1

Keywords

Navigation