Skip to main content

Advertisement

Log in

Microvesicles in Health and Disease

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Microvesicles (or MVs) are plasma membrane-derived vesicles released from most eukaryotic cells constitutively during early apoptosis or at higher levels after chemical or physical stress conditions. This review looks at some of the functions of MVs in terms of intercellular communication and ensuant signal transduction, including the transport of proteins (unconventional protein export) as well as of mRNA and microRNA. MVs also have roles in membrane repair, the removal of misfolded proteins, and in the control of apoptosis. We also discuss the role MVs have been shown to have in invasive growth and metastasis as well as in hypoxia in tumours and cerebral ischaemia. The association of MVs in infectious and autoimmune disease is also summarised together with their possible use as therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abid Hussein MN, Böing AN, Sturk A et al (2007) Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb Haemost 98:1096–1107

    PubMed  Google Scholar 

  • Abrahams VM, Straszewski-Chavez SL, Guller S (2004) First trimester trophoblast cells secrete Fas ligand which induces immune cell apoptosis. Mol Hum Reprod 10:55–63

    Article  PubMed  CAS  Google Scholar 

  • Albert ML, Kim JI, Birge RB (2000) Alphavbeta5 intregrin recruits the crkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2:899–905

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  PubMed  CAS  Google Scholar 

  • Amabile N, Heiss C, Real WM et al (2008) Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 177:1268–1275

    Article  PubMed  CAS  Google Scholar 

  • Andreola G, Rivoltini L, Castelli C et al (2002) Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 195:1303–1316

    Article  PubMed  CAS  Google Scholar 

  • Ansa-Addo EA, Lange S, Stratton D et al (2010) Human plasma membrane-derived vesicles halt proliferation and induce differentiation of THP-1 acute monocytic leukaemia cells. J Immunol 185:5236–5246

    Article  PubMed  CAS  Google Scholar 

  • Ansa-Addo EA, Cestari I, Pathak P et al (2012) Trypanosoma cruzi utilisation of host cell microvesicle release aids invasion. J Immunol (submitted)

  • Antonyak MA, Li B, Boroughs LK et al (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci USA 108:4852–4857

    Article  PubMed  CAS  Google Scholar 

  • Antwi-Baffour S, Kholia S, Aryee YK-D et al (2010) Human plasma membrane-derived vesicles inhibit the phagocytosis of apoptotic cells—possible role in SLE. Biochem Biophys Res Commun 398:278–283

    Article  PubMed  CAS  Google Scholar 

  • Aoki N, Yokoyama R, Asai N et al (2010) Adipocyte-derived microvesicles are associated with multiple angiogenic factors and induce angiogenesis in vivo and in vitro. Endocrinology 151:2567–2576

    Article  PubMed  CAS  Google Scholar 

  • Baj-Krzyworzeka M, Majka M, Pratico D et al (2002) Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 30:450–459

    Article  PubMed  CAS  Google Scholar 

  • Baj-Krzyworzeka M, Szatanek R, Weglarczyk K et al (2006) Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother 55:808–818

    Article  PubMed  CAS  Google Scholar 

  • Baj-Krzyworzeka M, Szatanek R, Weglarczyk K et al (2007) Tumour-derived microvesicles modulate biological activity of human monocytes. Immunol Lett 113:76–82

    Article  PubMed  CAS  Google Scholar 

  • Barry OP, Kazanietz MG, Pratico D et al (1999) Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway. J Biol Chem 274:7545–7556

    Article  PubMed  CAS  Google Scholar 

  • Barry OP, Pratico D, Savani RC et al (1998) Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 102:136–144

    Article  PubMed  CAS  Google Scholar 

  • Basse F, Gaffet P, Bienvenue A (1994) Correlation between inhibition of cytoskeleton proteolysis and anti-vesiculation effect of calpeptin during A23187-induced activation of human platelets: are vesicles shed by filopod fragmentation? Biochim Biophys Acta 1190:217–224

    Article  PubMed  CAS  Google Scholar 

  • Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700

    Article  PubMed  CAS  Google Scholar 

  • Bess JW Jr, Gorelic RJ, Bosche WJ et al (1997) Microvesicles are a source of contaminating cellular proteins found in purified HIV-1 preparations. Virology 230:134–144

    Article  PubMed  CAS  Google Scholar 

  • Bevers EM, Comfurius P, van Rijn JL et al (1982) Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur J Biochem 122:429–436

    Article  PubMed  CAS  Google Scholar 

  • Böing N, Hau CM, Sturk A et al (2008) Platelet microparticles contain active caspase 3. Platelets 19:96–103

    Article  PubMed  CAS  Google Scholar 

  • Bombara C, Ignotz RA (1992) TGF-beta inhibits proliferation of and promotes differentiation of human promonocytic leukemia cells. J Cell Physiol 153:30–37

    Article  PubMed  CAS  Google Scholar 

  • Borisenko GG, Matsura T, Liu SX et al (2003) Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells—existence of a threshold. Arch Biochem Biophys 413:41–52

    Article  PubMed  CAS  Google Scholar 

  • Bratton DL, Fadok VA, Richter DA et al (1997) Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem 272:26159–26165

    Article  PubMed  CAS  Google Scholar 

  • Brechot N, Gomez E, Bignon M et al (2008) Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice. PLoS One 3:e3950

    Article  PubMed  CAS  Google Scholar 

  • Brüne B (2003) Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ 10:864–869

    Article  PubMed  CAS  Google Scholar 

  • Butikofer P, Kuypers FA, Xu CM et al (1989) Enrichment of two glycosylphosphatidylinositol-anchored proteins, acetylcholinesterase and decay accelerating factor, in vesicles released from human red blood cells. Blood 74:1481–1485

    PubMed  CAS  Google Scholar 

  • Cestari I, Ansa-Addo E, Deolindo P et al (2012) Trypanosoma cruzi immune evasion mediated by host cell-derived microvesicles. J Immunol 188:1942–1952

    Google Scholar 

  • Chargaff E, West R (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166:189–197

    PubMed  CAS  Google Scholar 

  • Chen JF, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296:1634–1635

    Article  PubMed  CAS  Google Scholar 

  • Cheng EH, Sheiko TV, Fisher JK et al (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517

    Article  PubMed  CAS  Google Scholar 

  • Cherian P, Hankey GJ, Eikelboom JW et al (2003) Endothelial and platelet activation in acute ischemic stroke and its etiological subtypes. Stroke 34:2132–2137

    Article  PubMed  CAS  Google Scholar 

  • Chiarugi A, Moskowitz MA (2002) Cell biology. PARP-1—a perpetrator of apoptotic cell death? Science 297:200–201; comments 259–263

    Google Scholar 

  • Cleves AE (1997) Protein transports: the nonclassical ins and outs. Curr Biol 7:R318–R320

    Article  PubMed  CAS  Google Scholar 

  • Cohen JJ, Duke RC, Fadok VA et al (1992) Apoptosis and programmed cell death in immunity. Annu Rev Immunol 10:267–293

    Article  PubMed  CAS  Google Scholar 

  • Combes V, Coltel N, Alibert M et al (2005) ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am J Pathol 166:295–302

    Article  PubMed  CAS  Google Scholar 

  • Del Conde I, Shrimpton CN, Thiagarajan P et al (2005) Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106:1604–1611

    Article  PubMed  CAS  Google Scholar 

  • Deregibus MC, Cantaluppi V, Calogero R et al (2007) Endothelial progenitor cell-derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448

    Article  PubMed  CAS  Google Scholar 

  • Distler JH, Pisetsky DS, Huber LC et al (2005) Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum 52:3337–3348

    Article  PubMed  CAS  Google Scholar 

  • Do JT, Schöler HR (2004) Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22:941–949

    Article  PubMed  CAS  Google Scholar 

  • Edinger AL, Mankowski JL, Doranz BJ et al (1997) CD4-independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain. Proc Natl Acad Sci USA 94:14742–14747

    Article  PubMed  CAS  Google Scholar 

  • Eugenin EA, Morgello S, Klotman ME et al (2008) Human immunodeficiency virus (HIV) infects human arterial smooth muscle cells in vivo and in vitro: implications for the pathogenesis of HIV-mediated vascular disease. Am J Pathol 172:1100–1111

    Article  PubMed  CAS  Google Scholar 

  • Fadok VA, Bratton DL, Konowal A et al (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898

    Article  PubMed  CAS  Google Scholar 

  • Fauci AS (1996) Host factors and the pathogenesis of HIV-induced disease. Nature 384:529–534

    Article  PubMed  CAS  Google Scholar 

  • Florkiewicz RZ, Majack RA, Buechler RD et al (1995) Quantitative export of FGF-2 occurs through an alternative, energy-dependent, non-ER/Golgi pathway. J Cell Physiol 162:388–399

    Article  PubMed  CAS  Google Scholar 

  • Fox JE, Austin CD, Boyles JK et al (1990) Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane. J Cell Biol 111:483–493

    Article  PubMed  CAS  Google Scholar 

  • Freyssinet JM (2003) Cellular microparticles: what are they bad or good for? J Thromb Haemost 1:1655–1662

    Article  PubMed  CAS  Google Scholar 

  • Friend C, Marovitz W, Henie G et al (1978) Observations on cell lines derived from a patient with Hodgkin’s disease. Cancer Res 38:2581–2591

    PubMed  CAS  Google Scholar 

  • Fritzsching B, Schwer B, Kartenbeck J et al (2002) Release and intercellular transfer of cell surface CD81 via microparticles. J Immunol 169:5531–5537

    PubMed  CAS  Google Scholar 

  • Furie B, Furie BC (2004) Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 10:171–178

    Article  PubMed  CAS  Google Scholar 

  • Gasser O, Hess C, Miot S et al (2003) Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp Cell Res 285:243–257

    Article  PubMed  CAS  Google Scholar 

  • Gasser O, Schifferli JA (2004) Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104:2543–2548

    Article  PubMed  CAS  Google Scholar 

  • Gaustad KG, Boquest AC, Anderson BE (2004) Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 314:420–427

    Article  PubMed  CAS  Google Scholar 

  • George JN, Thoi LL, McManus LM et al (1982) Isolation of human platelet membrane microparticles from plasma and serum. Blood 60:834–840

    PubMed  CAS  Google Scholar 

  • Ginestra A, La Placa MD, Saladino F et al (1998) The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res 18:3433–3437

    PubMed  CAS  Google Scholar 

  • Gould SJ, Booth AM, Hildreth JE (2003) The Trojan exosome hypothesis. Proc Natl Acad Sci USA 100:10592–10597

    Article  PubMed  CAS  Google Scholar 

  • Grange C, Tapparo M, Collino F et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71:5346–5356

    Article  PubMed  CAS  Google Scholar 

  • Grant R, Ansa-Addo EA, Stratton D et al (2011) A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma. J Immunol Methods 371:143–151

    Article  PubMed  CAS  Google Scholar 

  • Graves LE, Ariztia EV, Navari JR et al (2004) Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 64:7045–7049

    Article  PubMed  CAS  Google Scholar 

  • Hakulinen J, Junnikkala S, Sorsa T et al (2004) Complement inhibitor membrane cofactor protein (MCP; CD46) is constitutively shed from cancer cell membranes in vesicles and converted by a metalloproteinase to a functionally active soluble form. Eur J Immunol 34:2620–2629

    Article  PubMed  CAS  Google Scholar 

  • Halder SK, Beauchamp RD, Datta PK (2005) A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia 7:509–521

    Article  PubMed  CAS  Google Scholar 

  • Hamilton KK, Hattori R, Esmon CT et al (1990) Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J Biol Chem 265:3809–3814

    PubMed  CAS  Google Scholar 

  • Hansen WR, Fletcher DA (2008) Tonic shock induces detachment of Giardia lamblia. PloS Negl Trop Dis 2:e169

    Article  PubMed  CAS  Google Scholar 

  • Herrmann M, Voll RE, Zoller OM et al (1998) Impaired phagocytosis of apoptotic cell material by monocyte derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41:1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Hess C, Sadallah S, Hefti A et al (1999) Ectosomes released by human neutrophils are specialized functional units. J Immunol 163:4564–4573

    PubMed  CAS  Google Scholar 

  • Hind E, Heugh S, Ansa-Addo EA et al (2010) Red cell PMVs, plasma membrane-derived vesicles calling out for standards. Biochem Biophys Res Commun 399:465–469

    Article  PubMed  CAS  Google Scholar 

  • Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523

    Article  PubMed  CAS  Google Scholar 

  • Horstman LL, Ahn YS (1999) Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol 30:111–142

    Article  PubMed  CAS  Google Scholar 

  • Hsu HH, Camacho NP (1999) Isolation of calcifiable vesicles from human atherosclerotic aortas. Atherosclerosis 143:353–362

    Article  PubMed  CAS  Google Scholar 

  • Huber V, Fais S, Iero M et al (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128:1796–1804

    Article  PubMed  CAS  Google Scholar 

  • Hugel B, Martinez MC, Kunzelmann C et al (2005) Membrane microparticles: two sides of the coin. Physiology 20:22–27

    Article  PubMed  CAS  Google Scholar 

  • Hughes RC (1999) Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta 1473:172–185

    Article  PubMed  CAS  Google Scholar 

  • Jacobson K, Dietrich C (1999) Looking at lipid rafts? Trends Cell Biol 9:87–91

    Article  PubMed  CAS  Google Scholar 

  • Janowska-Wieczorek A, Majka M, Kijowski J et al (2001) Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 98:3143–3149

    Article  PubMed  CAS  Google Scholar 

  • Janowska-Wieczorek A, Marquez-Curtis LA, Wysoczynski M et al (2006) Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion 46:1199–1209

    Article  PubMed  Google Scholar 

  • Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760

    Article  PubMed  CAS  Google Scholar 

  • Jy W, Jimenez JJ, Mauro LM et al (2002) Agonist-induced capping of adhesion proteins and microparticle shedding in cultures of human renal microvascular endothelial cells. Endothelium 9:179–189

    Article  PubMed  CAS  Google Scholar 

  • Kelton JG, Warkentin TE, Hayward CP et al (1992) Calpain activity in patients with thrombotic thrombocytopenic purpura is associated with platelet microparticles. Blood 80:2246–2251

    PubMed  CAS  Google Scholar 

  • Khiati A, Chaloin O, Muller S et al (2010) Induction of monocyte chemoattractant protein-1 (MCP-1/CCL2) gene expression by human immunodeficiency virus-1 Tat in human astrocytes is CDK9 dependent. J Neurovirol 16:150–167

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Song KS, Park YS et al (2003) Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 39:184–191

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Wieckowski E, Taylor DD et al (2005) Fas ligand-positive membranous vesicles isolated form sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11:1010–1020

    PubMed  CAS  Google Scholar 

  • Lee MC, Miller EA, Goldberg J et al (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123

    Article  PubMed  CAS  Google Scholar 

  • Lima LG, Chammas R, Monteiro RQ et al (2009) Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett 283:168–175

    Article  PubMed  CAS  Google Scholar 

  • Lutomski D, Fouillit M, Bourin P et al (1997) Externalization and binding of galectin-1 on cell surface of K562 cells upon erythroid differentiation. Glycobiology 7:1193–1199

    Article  PubMed  CAS  Google Scholar 

  • Mack M, Kleinschmidt A, Bruhl H et al (2000) Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med 6:769–775

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie A, Wilson HL, Kiss-Toth E et al (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15:825–835

    Article  PubMed  CAS  Google Scholar 

  • McNeil PL, Muthukrishnan L, Warder E et al (1989) Growth factors are released by mechanically wounded endothelial cells. J Cell Biol 109:811–822

    Article  PubMed  CAS  Google Scholar 

  • Maizel A, Tassetto M, Filhol O et al (2002) Engrailed homeoprotein secretion is a regulated process. Development 129:3545–3553

    PubMed  CAS  Google Scholar 

  • Majka M, Janowska-Wieczorek A, Ratajczak J et al (2001) Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97:3075–3085

    Article  PubMed  CAS  Google Scholar 

  • Majka M, Kijowski J, Lesko E et al (2007) Evidence that platelet-derived microvesicles may transfer platelet-specific immunoreactive antigens to the surface of endothelial cells and CD34+ hematopoietic stem/progenitor cells—implication for the pathogenesis of immune thrombocytopenias. Folia Histochem Cytobiol 45:27–32

    PubMed  CAS  Google Scholar 

  • Majka M, Rozmyslowicz T, Honczarenko M et al (2000) Biological significance of the expression of HIV-related chemokine coreceptors (CCR5 and CXCR4) and their ligands by human hematopoietic cell lines. Leukemia 14:1821–1832

    Article  PubMed  CAS  Google Scholar 

  • Mallat Z, Benamer H, Hugel B et al (2000) Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 101:841–843

    PubMed  CAS  Google Scholar 

  • Martinez MC, Larbret F, Zobairi F et al (2006) Transfer of differentiation signal by membrane microvesicles harboring hedgehog morphogens. Blood 108:3012–3020

    Article  PubMed  CAS  Google Scholar 

  • Matzdorff AC, Berchner D, Kuhnel G et al (1998) Relative and absolute changes of activated platelets, microparticles and platelet aggregates after activation in vitro. Haemostasis 28:277–288

    PubMed  CAS  Google Scholar 

  • Morgan BP, Campbell AK (1985) The recovery of human polymorphonuclear leucocytes from sublytic complement attack is mediated by changes in intracellular free calcium. Biochem J 231:205–208

    PubMed  CAS  Google Scholar 

  • Mostefai HA, Andriantsitohaina R, Martinez MC (2008) Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer. Physiol Res 57:311–320

    PubMed  CAS  Google Scholar 

  • Muralidharan-Chari V, Clancy JW, Sedgwick A et al (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611

    Article  PubMed  CAS  Google Scholar 

  • Nagai A, Sato T, Akimoto N et al (2005) Isolation and identification of histone H3 protein enriched in microvesicles secreted from cultured sebocytes. Endocrinology 146:2593–2601

    Article  PubMed  CAS  Google Scholar 

  • Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109–2119

    Article  PubMed  CAS  Google Scholar 

  • Nickel W (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6:607–614

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Skog J, Nordstrand A et al (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100:1603–1607

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Gupta K, Yang JT et al (2009) Physical transfer of membrane and cytoplasmic components as a general mechanism of cell–cell communication. J Cell Sci 122:600–610

    Article  PubMed  CAS  Google Scholar 

  • Nolan S, Dixon R, Norman K et al (2008) Nitric oxide regulates neutrophil migration through microparticle formation. Am J Pathol 172:265–273

    Article  PubMed  CAS  Google Scholar 

  • Omoto S, Nomura S, Shouzu A et al (2002) Detection of monocyte-derived microparticles in patients with Type II diabetes mellitus. Diabetologia 45:550–555

    Article  PubMed  CAS  Google Scholar 

  • Pap E, Pallinger E, Pasztoi M et al (2009) Highlights of a new type of intercellular communication: microvesicle-based information transfer. Inflamm Res 58:1–8

    Article  PubMed  CAS  Google Scholar 

  • Park JE, Tan HS, Datta A et al (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9:1085–1099

    Article  PubMed  CAS  Google Scholar 

  • Pelchen-Matthews A, Raposo G, Marsh M (2004) Endosomes, exosomes and Trojan viruses. Trends Microbiol 12:310–316

    Article  PubMed  CAS  Google Scholar 

  • Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21:157–171

    Article  PubMed  CAS  Google Scholar 

  • Prudovsky I, Bagala C, Tarantini F et al (2002) The intracellular translocation of the components of the fibroblast growth factor 1 release complex precedes their assembly prior to export. J Cell Biol 158:201–208

    Article  PubMed  CAS  Google Scholar 

  • Putz U, Howitt J, Lackovic J et al (2008) Nedd4 family-interacting protein 1 (Ndfip1) is required for the exosomal secretion of Nedd4 family proteins. J Biol Chem 283:32621–32627

    Article  PubMed  CAS  Google Scholar 

  • Qu J, Adam J, Bloxham DM et al (2000) Phosphatidylserine-dependent adhesion of T cells to endothelial cells. Biochim Biophys Acta 1501:99–115

    PubMed  CAS  Google Scholar 

  • Ratajczak J, Miekus K, Kucia M et al (2006a) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak J, Wysoczynski M, Hayek F et al (2006b) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Rauch U, Antoniak S (2007) Tissue factor-positive microparticles in blood associated with coagulopathy in cancer. Thromb Haemost 97:9–10

    PubMed  CAS  Google Scholar 

  • Robertson C, Booth SA, Beniac DR et al (2006) Cellular prion protein is released on exosomes from activated platelets. Blood 107:3907–3911

    Article  PubMed  CAS  Google Scholar 

  • Rood IM, Deegens JK, Merchant ML et al (2010) Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int 78:810–816

    Article  PubMed  CAS  Google Scholar 

  • Rubartelli A, Cozzolino F, Talio M et al (1990) A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. EMBO J 9:1503–1510

    PubMed  CAS  Google Scholar 

  • Sadallah S, Eken C, Schifferli JA (2008) Erythrocyte-derived ectosomes have immunosuppressive properties. J Leukoc Biol 84:1316–1325

    Article  PubMed  CAS  Google Scholar 

  • Safaei R, Larson BJ, Cheng TC et al (2005) Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 4:1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Samson M, Libert F, Doranz BJ et al (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    Article  PubMed  CAS  Google Scholar 

  • Sapet C, Simoncini S, Loriod B et al (2006) Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood 108:1868–1876

    Article  PubMed  CAS  Google Scholar 

  • Sarkar A, Mitra S, Mehta S et al (2009) Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One 4:e7140

    Article  PubMed  CAS  Google Scholar 

  • Satta N, Toti F, Feugeas O et al (1994) Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol 153:3245–3255

    PubMed  CAS  Google Scholar 

  • Scanu A, Molnarfi N, Brandt KJ et al (2008) Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. J Leukoc Biol 83:921–927

    Article  PubMed  CAS  Google Scholar 

  • Scholz T, Temmler U, Krause S et al (2002) Transfer of tissue factor from platelets to monocytes: role of platelet-derived microvesicles and CD62P. Thromb Haemost 88:1033–1038

    PubMed  CAS  Google Scholar 

  • Segerer S, Mack M, Regele H et al (1999) Expression of the C-C chemokine receptor 5 in human kidney diseases. Kidney Int 56:52–64

    Article  PubMed  CAS  Google Scholar 

  • Shah MD, Bergeron AL, Dong JF et al (2008) Flow cytometric measurement of microparticles: pitfalls and protocol modifications. Platelets 19:365–372

    Article  PubMed  CAS  Google Scholar 

  • Shedden K, Xie XT, Chandaroy P et al (2003) Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res 63:4331–4337

    PubMed  CAS  Google Scholar 

  • Shet AS, Aras O, Gupta K et al (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102:2678–2683

    Article  PubMed  CAS  Google Scholar 

  • Simak J, Gelderman MP (2006) Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev 20:1–26

    Article  PubMed  Google Scholar 

  • Simak J, Gelderman MP, Yu H et al (2006) Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J Thromb Haemost 4:1296–1302

    Article  PubMed  CAS  Google Scholar 

  • Simak J, Holada K, Vostal JG (2002) Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin. BMC Cell Biol 3:11

    Article  PubMed  Google Scholar 

  • Sims PJ, Faioni EM, Wiedmer T et al (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263:18205–18212

    PubMed  CAS  Google Scholar 

  • Smalley DM, Ley K (2008) Plasma-derived microparticles for biomarker discovery. Clin Lab 54:67–79

    PubMed  CAS  Google Scholar 

  • Spees JL, Olson SD, Whitney MJ et al (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103:1283–1288

    Article  PubMed  CAS  Google Scholar 

  • Stoorvogel W, Kleijmeer MJ, Geuze HJ et al (2002) The biogenesis and functions of exosomes. Traffic 3:321–330

    Article  PubMed  CAS  Google Scholar 

  • Tailleux L, Pham-Thi N, Bergeron-Lafaurie A et al (2005) DC-SIGN induction in alveolar macrophages defines privileged target host cells for mycobacteria in patients with tuberculosis. PLoS Med 2:e381

    Article  PubMed  CAS  Google Scholar 

  • Taranger CK, Noer A, Sorensen AL et al (2005) Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16:5719–5735

    Article  PubMed  CAS  Google Scholar 

  • Thery C, Boussac M, Veron P et al (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318

    PubMed  CAS  Google Scholar 

  • Tomas A, Yermen B, Min L et al (2006) Regulation of pancreatic β-cell insulin secretion by actin cytoskeleton remodelling: role of Gelsolin and cooperation with the MAPK signalling pathway. J Cell Sci 119:2156–2167

    Article  PubMed  CAS  Google Scholar 

  • Valenti R, Huber V, Filipazzi P et al (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298

    Article  PubMed  CAS  Google Scholar 

  • Vandendries ER, Furie BC, Furie B (2004) Role of P-selectin and PSGL-1 in coagulation and thrombosis. Thromb Haemost 92:459–466

    PubMed  CAS  Google Scholar 

  • van Doormaal FF, Kleinjan A, Di Nisio M (2009) Cell-derived microvesicles and cancer. Neth J Med 67:266–273

    PubMed  Google Scholar 

  • VanWijk MJ, VanBavel E, Sturk A et al (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59:277–287

    Article  PubMed  CAS  Google Scholar 

  • Whitlow MB, Klein LM (1997) Response of SCC-12F, a human squamous cell carcinoma cell line, to complement attack. J Invest Dermatol 109:39–45

    Article  PubMed  CAS  Google Scholar 

  • Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288

    Article  PubMed  CAS  Google Scholar 

  • Wysoczynski M, Ratajczak MZ (2009) Lung cancer secreted microvesicles: underappreciated modulators of microrenvironment in expanding tumors. Int J Cancer 125:1595–1603

    Article  PubMed  CAS  Google Scholar 

  • Yingling JM, Blanchard KL, Sawyer JS (2004) Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Zwaal RF, Bevers EM (1983) Platelet phospholipid asymmetry and its significance in hemostasis. Subcell Biochem 9:299–334

    Article  PubMed  CAS  Google Scholar 

  • Zwicker JI, Liebman HA, Neuberg D et al (2009) Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 15:6830–6840

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. McCrossan (London School of Hygiene and Tropical Medicine) for help with obtaining the electron microscopy images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameel M. Inal.

Additional information

E. A. Ansa-Addo and D. Stratton contributed equally to this work.

About this article

Cite this article

Inal, J.M., Ansa-Addo, E.A., Stratton, D. et al. Microvesicles in Health and Disease. Arch. Immunol. Ther. Exp. 60, 107–121 (2012). https://doi.org/10.1007/s00005-012-0165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-012-0165-2

Keywords

Navigation