Abele G (1974) Bergsturze in den Alpen. Ihre Verbreitung, Morphologie und Folgeerscheinungen. Wiss Alpenvereinshefte 25:230
Google Scholar
Abele G (1997) Rockslide movement supported by the mobilization of groundwater-saturated valley floor sediments. Zeitschrift für Geomorphol 1–20
Allen SK, Cox SC, Owens IF (2011) Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts. Landslides 8:33–48. https://doi.org/10.1007/s10346-010-0222-z
Article
Google Scholar
Andrés N, Tanarro LM, Fernández JM, Palacios D (2016) The origin of glacial alpine landscape in Tröllaskagi Peninsula (North Iceland). Cuad Investig Geográfica 42:341. https://doi.org/10.18172/cig.2935
Article
Google Scholar
Andrés N, Palacios D, Sæmundsson Þ et al (2019) The rapid deglaciation of the Skagafjörður fjord, northern Iceland. Boreas 48:92–106. https://doi.org/10.1111/bor.12341
Article
Google Scholar
Andrews JT, Hardardóttir J, Helgadóttir G, E. Jennings A, Geirsdóttir Á, Sveinbjörnsdóttir ÁE, Schoolfield S, Kristjánsdóttir GB, Micaela Smith L, Thors K, Syvitski JPM (2000) The N and W Iceland shelf: insights into last glacial maximum ice extent and deglaciation based on acoustic stratigraphy and basal radiocarbon AMS dates. Quat Sci Rev 19:619–631. https://doi.org/10.1016/S0277-3791(99)00036-0
Article
Google Scholar
Arnalds Þ, Sauermoser S, Jóhannesson T, Grímsdóttir T (2001) Hazard zoning for Siglufjörður. Reykjavík
Ashastina K, Schirrmeister L, Fuchs M, Kienast F (2017) Palaeoclimate characteristics in interior Siberia of MIS 6-2: First insights from the Batagay permafrost mega-thaw slump in the Yana Highlands. Clim Past 13:795–818. https://doi.org/10.5194/cp-13-795-2017
Article
Google Scholar
Baum RL, Godt JW (2010) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 7:259–272. https://doi.org/10.1007/s10346-009-0177-0
Article
Google Scholar
Beniston M, Farinotti D, Stoffel M, Andreassen LM, Coppola E, Eckert N, Fantini A, Giacona F, Hauck C, Huss M, Huwald H, Lehning M, López-Moreno JI, Magnusson J, Marty C, Morán-Tejéda E, Morin S, Naaim M, Provenzale A, Rabatel A, Six D, Stötter J, Strasser U, Terzago S, Vincent C (2018) The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosph 12:759–794. https://doi.org/10.5194/tc-12-759-2018
Article
Google Scholar
Bessette-Kirton EK, Coe JA (2020) A 36-year record of rock avalanches in the Saint Elias Mountains of Alaska, with implications for future hazards. Front Earth Sci 8:293
Article
Google Scholar
Bottino G, Chiarle M, Joly A, Mortara G (2002) Modelling rock avalanches and their relation to permafrost degradation in glacial environments. Permafr Periglac Process 13:283–288. https://doi.org/10.1002/ppp.432
Article
Google Scholar
Boultbee N, Stead D, Schwab J, Geertsema M (2006) The Zymoetz River rock avalanche, June 2002, British Columbia, Canada. Eng Geol 83:76–93. https://doi.org/10.1016/j.enggeo.2005.06.038
Article
Google Scholar
Brideau M, Stead D, Hopkinson C et al (2009) Preliminary description and slope stability analyses of the 2008 Little Salmon Lake and 2007 Mt . Steele landslides , Yukon. Yukon Explor Geol:119–134
Brynjólfsson S, Schomacker A, Ingólfsson Ó (2014) Geomorphology and the Little Ice Age extent of the Drangajökull ice cap, NW Iceland, with focus on its three surge-type outlets. Geomorphology 213:292–304. https://doi.org/10.1016/j.geomorph.2014.01.019
Article
Google Scholar
Capra L, Macías JL (2000) Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico. J Volcanol Geotherm Res 102:149–167. https://doi.org/10.1016/S0377-0273(00)00186-4
Article
Google Scholar
Clague JJ, Huggel C, Korup O, Mcguire B (2012) Climate change and hazardous processes in high mountains. Rev la Asoc Geológica Argentina 69:328–338. https://doi.org/10.5167/uzh-77920
Article
Google Scholar
Coe JA, Bessette-Kirton EK, Geertsema M (2018) Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery. Landslides 15:393–407
Article
Google Scholar
Conway SJ, Balme MR (2014) Decameter thick remnant glacial ice deposits on Mars. Geophys Res Lett 41:5402–5409. https://doi.org/10.1002/2014GL059980.Received
Article
Google Scholar
Copons R, Vilaplana JM, Linares R (2009) Rockfall travel distance analysis by using empirical models ( Soì a d ’ Andorra la Vella , Central Pyrenees ). Nat Hazards Earth Syst Sci 9:2107–2118. https://doi.org/10.5194/nhess-9-2107-2009
Article
Google Scholar
Coquin J, Mercier D, Bourgeois O, Decaulne A (2019) A paraglacial rock-slope failure origin for cirques: a case study from Northern IcelandDes mouvements de masse paraglaciaires à l’origine des cirques : une étude de cas au nord de l’Islande. Géomorphologie Reli Process Environ 25:117–136. https://doi.org/10.4000/geomorphologie.13057
Article
Google Scholar
Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271
Article
Google Scholar
Costa JE (1984) Physical geomorphology of debris flows. Dev Appl Geomorphol:268–317
Crochet P, Jóhannesson T (2011) A data set of gridded daily temperature in Iceland, 1949–2010. Jökull 61:1–17
Google Scholar
Crochet P, Jóhannesson T, Jónsson T, Sigurðsson O, Björnsson H, Pálsson F, Barstad I (2007) Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. J Hydrometeorol 8:1285–1306. https://doi.org/10.1175/2007JHM795.1
Article
Google Scholar
Crosta GB (2001) Failure and flow development of a complex slide: the 1993 Sesa landslide. Eng Geol 59:173–199. https://doi.org/10.1016/S0013-7952(00)00073-9
Article
Google Scholar
Crosta GB, Chen H, Lee CF (2004) Replay of the 1987 Val Pola Landslide, Italian Alps. Geomorphology 60:127–146. https://doi.org/10.1016/j.geomorph.2003.07.015
Article
Google Scholar
Crosta GB, Imposimato S, Roddeman D (2009) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng Geol 109:135–145
Article
Google Scholar
Cruden DM, Varnes D (1996) Landslide types and processes. In: Transportation research board UNRC (ed) Landslides investigation and mitigation. Special Re. Washington, DC, pp 36–75
Google Scholar
Czekirda J, Westermann S, Etzelmüller B, Jóhannesson T (2019) Transient modelling of permafrost distribution in Iceland. Front Earth Sci 7:1–23. https://doi.org/10.3389/feart.2019.00130
Article
Google Scholar
Davies TRH, McSaveney MJ (2012) Mobility of long-runout rock avalanches. In: Landslides: Types, Mechanisms and Modeling. Cambridge University Press, pp 50–58
De Blasio FV (2014) Friction and dynamics of rock avalanches travelling on glaciers. Geomorphology 213:88–98. https://doi.org/10.1016/j.geomorph.2014.01.001
Article
Google Scholar
De Blasio FV, Elverhøi A (2008) A model for frictional melt production beneath large rock avalanches. J Geophys Res Earth Surf 113:1–13. https://doi.org/10.1029/2007JF000867
Article
Google Scholar
De Blasio FV, Engvik LE, Elverhøi A (2006) Sliding of outrunner blocks from submarine landslides. Geophys Res Lett 33:8–11. https://doi.org/10.1029/2005GL025165
Article
Google Scholar
Decaulne A (2001) Dynamique des versants et risques naturels dans les fjords d’Islande du nord-ouest, l’impact géomorphologique et humain des avalanches et des debris flows, PhD Thesis. University of Clermont II, France
Decaulne A, Sæmundsson P, Pétursson O (2005) Debris flow triggered by rapid snowmelt: A case study in the Gleidarhjalli area, northwestern Iceland. Geogr Ann Ser A Phys Geogr 87:487–500. https://doi.org/10.1111/j.0435-3676.2005.00273.x
Article
Google Scholar
Delaney KB, Evans SG (2014) The 1997 Mount Munday landslide (British Columbia) and the behaviour of rock avalanches on glacier surfaces. Landslides 11:1019–1036
Article
Google Scholar
Draebing D, Krautblatter M, Dikau R (2014) Interaction of thermal and mechanical processes in steep permafrost rock walls: a conceptual approach. Geomorphology 226:226–235. https://doi.org/10.1016/j.geomorph.2014.08.009
Article
Google Scholar
Einarsson MÄ (1984) Climate of Iceland. orld Surv Climatol 15:673–697
Erismann TH, Abele G (2001) Dynamics of rockslides and rockfalls. Springer-Verlag, Berlin
Etzelmüller B, Farbrot H, Guðmundsson Á, Humlum O, Tveito OE, Björnsson H (2007) The regional distribution of mountain permafrost in Iceland. Permafr Periglac Process 18:185–199. https://doi.org/10.1002/ppp.583
Article
Google Scholar
Evans SG, Clague JJ (1988) Catastrophic rock avalanches in glacial environments. In: Bonnard C (ed) Landslides - Proceedings of the Fifth International Symposium on Landslides, Lausanne, Switzerland. Lausanne, Switzerland, pp 1153–1158
Farbrot H, Etzelmüller B, Guðmundsson Á, Humlum O, Kellerer-Pirklbauer A, Eiken T, Wangensteen B (2007a) Rock glaciers and permafrost in Tröllaskagi, northern Iceland. Zeitschrift für Geomorphol 51:1–16. https://doi.org/10.1127/0372-8854/2007/0051S2-0001
Article
Google Scholar
Farbrot H, Etzelmüller B, Schuler TV et al (2007b) Thermal characteristics and impact of climate change on mountain permafrost in Iceland. J Geophys Res 112:F03S90. https://doi.org/10.1029/2006JF000541
Article
Google Scholar
Fischer L, Kääb A, Huggel C, Noetzli J (2006) Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Nat Hazards Earth Syst Sci 6:761–772. https://doi.org/10.5194/nhess-6-761-2006
Article
Google Scholar
Fonstad MA, Dietrich JT, Courville BC, Jensen JL, Carbonneau PE (2013) Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf Process Landforms 38:421–430. https://doi.org/10.1002/esp.3366
Article
Google Scholar
French HM (2007) The periglacial environment, Third Edit
Furukawa Y, Ponce J (2010) Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell 32:1362–1376. https://doi.org/10.1109/TPAMI.2009.161
Article
Google Scholar
Garcia S, Arnaud NO, Angelier J, Bergerat F, Homberg C (2003) Rift jump process in Northern Iceland since 10 Ma from40Ar/39Ar geochronology. Earth Planet Sci Lett 214:529–544. https://doi.org/10.1016/S0012-821X(03)00400-X
Article
Google Scholar
Geertsema M, Hungr O, Schwab JW, Evans SG (2006) A large rockslide - debris avalanche in cohesive soil at Pink Mountain, northeastern British Columbia, Canada. Eng Geol 83:64–75. https://doi.org/10.1016/j.enggeo.2005.06.025
Article
Google Scholar
Geirsdóttir A, Miller GH, Axford Y, Olafsdottir S (2009) Holocene and latest Pleistocene climate and glacier fluctuations in Iceland. Quat Sci Rev 28:2107–2118. https://doi.org/10.1016/j.quascirev.2009.03.013
Article
Google Scholar
Glade T (2005) Linking debris-flow hazard assessments with geomorphology. Geomorphology 66:189–213. https://doi.org/10.1016/j.geomorph.2004.09.023
Article
Google Scholar
Glade T, Jensen EH (2004) Recommendations for landslide hazard assessments in Bolungarvik and Vesturbyggd, NW-Iceland. Reykjavik
Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperatures-related destabilization following climate change. J Geophys Res Earth Surf 112:1–10. https://doi.org/10.1029/2006JF000547
Article
Google Scholar
Haeberli W, Noetzli J, Arenson L, Delaloye R, Gärtner-Roer I, Gruber S, Isaksen K, Kneisel C, Krautblatter M, Phillips M (2011) Mountain permafrost: development and challenges of a young research field. J Glaciol 56:1043–1058. https://doi.org/10.3189/002214311796406121
Article
Google Scholar
Haeberli W, Schaub Y, Huggel C (2017) Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 293:405–417. https://doi.org/10.1016/j.geomorph.2016.02.009
Article
Google Scholar
Heim A (1932) Landslides and human lives, N. Skermer. Bi-Tech Publishers, Vancouver, B.C.
Hsu K (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:129–140
Article
Google Scholar
Huggel C, Zgraggen-Oswald S, Haeberli W, Kääb A, Polkvoj A, Galushkin I, Evans SG (2005) The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat Hazards Earth Syst Sci 5:173–187. https://doi.org/10.5194/nhess-5-173-2005
Article
Google Scholar
Huggel C, Gruber S, Caplan-Auerbach S, et al (2008) The 2005 Mt. Steller, Alaska, rock-ice avalanche: a large slope failure in cold permafrost
Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Process Landforms 37:77–91. https://doi.org/10.1002/esp.2223
Article
Google Scholar
Hungr O (1990) Momentum transfer and friction in the debris of rock avalanches: Discussion. Can Geotech J 27:697–697
Article
Google Scholar
Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Bull Geol Soc Am 116:1240–1252. https://doi.org/10.1130/B25362.1
Article
Google Scholar
Hunter G, Fell R (2003) Travel distance angle for “rapid” landslides in constructed and natural soil slopes. Can Geotech J 40:1123–1141. https://doi.org/10.1139/t03-061
Article
Google Scholar
Huscroft C, Lipovsky PS, Bond JD (2004) Permafrost and landslide activity: case studies from southwestern Yukon Territory. Yukon Explor Geol 2003:107–119
Google Scholar
Iverson RM (1997) The Physics of Debris Flows. Rev Geophys 3:245–296
Article
Google Scholar
Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910. https://doi.org/10.1029/2000WR900090
Article
Google Scholar
Iverson RM, Major JJ (1987) Rainfall, groundwater flow, and seasonal motion at Minor Creek landslide, northwestern California: Physical interpretation of empirical relations. Geol Soc Am Bull 99:579–594. https://doi.org/10.1130/0016-7606(1987)99<579:RGFASM>2.0.CO;2
Article
Google Scholar
James MR, Robson S (2012) Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J Geophys Res Earth Surf 117:1–17. https://doi.org/10.1029/2011JF002289
Article
Google Scholar
James MR, Robson S (2014) Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf Process Landforms 39:1413–1420. https://doi.org/10.1002/esp.3609
Article
Google Scholar
Javernick L, Brasington J, Caruso B (2014) Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 213:166–182. https://doi.org/10.1016/j.geomorph.2014.01.006
Article
Google Scholar
Jóhannesson H (2014) Geological Map of Iceland. Bedrock Geology. Scale: 1:600 000. In: 2nd Ed. Náttúrufræðistofnun Íslands – Icelandic Inst. Nat. Hist. www.arcgis.com/home/item.html?id=c56c70100e21467891fde8f534da96c3#overview
Jónsson HB, Norðdahl H, Pétursson HG (2004) Myndaði Berghlaup Vatnsdalshóla? Náttúrufræðingurinn 72(72):129–138
Google Scholar
Kellerer-Pirklbauer A, Lieb GK, Avian M, Carrivick J (2012) Climate change and rock fall events in high mountain areas: numerous and extensive rock falls in 2007 at Mittlerer Burgstall, central Austria. Geogr Ann Ser A, Phys Geogr 94:59–78
Article
Google Scholar
King LC (1953) Canons of landscape evolution. Geol Soc Am Bullettin 64:721–752
Article
Google Scholar
Krautblatter M, Funk D, Günzel FK (2013) Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space. Earth Surf Process Landforms 38:876–887. https://doi.org/10.1002/esp.3374
Article
Google Scholar
Lacelle D, Bjornson J, Lauriol B (2010) Climatic and geomorphic factors affecting contemporary (1950-2004) activity of retrogressive thaw slumps on the Aklavik plateau, Richardson mountains, NWT, Canada. Permafr Periglac Process 21:1–15. https://doi.org/10.1002/ppp.666
Article
Google Scholar
Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331. https://doi.org/10.1016/S0013-7952(01)00090-4
Article
Google Scholar
Lewkowicz AG, Harris C (2005) Morphology and geotechnique of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada. Geomorphology 69:275–297. https://doi.org/10.1016/j.geomorph.2005.01.011
Article
Google Scholar
Lilleøren KS, Etzelmüller B, Gärtner-Roer I, Kääb A, Westermann S, Guðmundsson Á (2013) The distribution, thermal characteristics and dynamics of permafrost in Tr??llaskagi, Northern Iceland, as Inferred from the Distribution of Rock Glaciers and Ice-Cored Moraines. Permafr Periglac Process 24:322–335. https://doi.org/10.1002/ppp.1792
Article
Google Scholar
Lindeberg T (2012) Scale invariant feature transform
Lowe G (2004) Sift-the scale invariant feature transform. Int J 2:2
Google Scholar
Lucchitta BK (1978) A large landslide on Mars. Bull Geol Soc Am 89:1601–1609. https://doi.org/10.1130/0016-7606(1978)89<1601:ALLOM>2.0.CO;2
Article
Google Scholar
Lyle RR, Hutchinson DJ, Preston Y (2004) Landslide processes in discontinuous permafrost, Little Salmon Lake (NTS 105L/1 and 2), south-central Yukon. Yukon Explor Geol:193–204
Lyle RR, Brideau M, Lipovsky P, Hutchnson DJ (2014) Landslides on ice-rich slopes – a geohazard in a changing climate. In: 4th Canadian Conference on Geohazards. ep 10
Magnin F, Josnin JY, Ravanel L, Pergaud J, Pohl B, Deline P (2017) Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century. Cryosphere 11:1813–1834. https://doi.org/10.5194/tc-11-1813-2017
Article
Google Scholar
Matsuura S, Asano S, Okamoto T (2008) Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Eng Geol 101:49–59. https://doi.org/10.1016/j.enggeo.2008.03.007
Article
Google Scholar
McColl ST (2012) Paraglacial rock-slope stability. Geomorphology 153:1–16
Article
Google Scholar
McConnell RG, Brock RW (1902) Report on the great landslide at Frank, Alberta, Canada. Can Dep Inter Annu Rep
McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097. https://doi.org/10.1139/t04-052
Article
Google Scholar
McSaveney MJ (1978) Sherman glacier rock avalanche, Alaska, USA. In: Developments in Geotechnical Engineering. pp 197–258
Micheletti N, Chandler JH, Lane SN (2015a) Structure from motion (SfM) Photogrammetry. Geomorphol Tech (online Ed London, Br Soc Geomorphol 2.2:303–334. https://doi.org/10.1007/978-1-84882-935-0_7
Micheletti N, Chandler JH, Lane SN (2015b) Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surf Process Landforms 40:473–486. https://doi.org/10.1002/esp.3648
Article
Google Scholar
Milana JP (2016) Molards and their relation to landslides involving permafrost failure. Permafr Periglac Process 27:271–284. https://doi.org/10.1002/ppp.1878
Article
Google Scholar
Morino C, Conway SJ, Sæmundsson Þ, Helgason JK, Hillier J, Butcher FEG, Balme MR, Jordan C, Argles T (2019) Molards as an indicator of permafrost degradation and landslide processes. Earth Planet Sci Lett 516:136–147. https://doi.org/10.1016/j.epsl.2019.03.040
Article
Google Scholar
Patton AI, Rathburn SL, Capps DM (2019) Landslide response to climate change in permafrost regions. Geomorphology 340:116–128. https://doi.org/10.1016/j.geomorph.2019.04.029
Article
Google Scholar
Pétursson HG, Norðdahl H, Ingólfsson Ó (2015) Late Weichselian history of relative sea level changes in Iceland during a collapse and subsequent retreat of marine based ice sheet. Cuad Investig Geográfica 41:261. https://doi.org/10.18172/cig.2741
Article
Google Scholar
Phillips M, Wolter A, Lüthi R, Amann F, Kenner R, Bühler Y (2017) Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (Eastern Swiss Alps), February 2014. Earth Surf Process Landforms 42:426–438. https://doi.org/10.1002/esp.3992
Article
Google Scholar
Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res Earth Surf 117:1–28. https://doi.org/10.1029/2011JF002186
Article
Google Scholar
Pudasaini SP, Krautblatter M (2014) Journal of Geophysical Research : Earth Surface A two-phase mechanical model for rock-ice avalanches. 2272–2290. 10.1002/2014JF003183.Received
Ravanel L, Magnin F, Deline P (2017) Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. Sci Total Environ 609:132–143. https://doi.org/10.1016/j.scitotenv.2017.07.055
Article
Google Scholar
Remondino F, Spera MG, Nocerino E, Menna F, Nex F (2014) State of the art in high density image matching. Photogramm Rec 29:144–166. https://doi.org/10.1111/phor.12063
Article
Google Scholar
Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77. https://doi.org/10.1023/A:1008064220727
Article
Google Scholar
Roberti G, Friele P, de Vries B v W et al (2017) Rheological evolution of the Mount Meager 2010 debris avalanche, southwestern British Columbia. Geosphere 13:369–390
Article
Google Scholar
Sæmundsson Þ, Morino C, Helgason JK, Conway SJ, Pétursson HG (2018) The triggering factors of the Móafellshyrna debris slide in northern Iceland: Intense precipitation, earthquake activity and thawing of mountain permafrost. Sci Total Environ 621:1163–1175. https://doi.org/10.1016/j.scitotenv.2017.10.111
Article
Google Scholar
Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech Rock Eng 5:231–236
Article
Google Scholar
Schneider D, Huggel C, Haeberli W, Kaitna R (2011a) Unraveling driving factors for large rock-ice avalanche mobility. Earth Surf Process Landforms 36:1948–1966. https://doi.org/10.1002/esp.2218
Article
Google Scholar
Schneider D, Kaitna R, Dietrich WE, Hsu L, Huggel C, McArdell BW (2011b) Frictional behavior of granular gravel-ice mixtures in vertically rotating drum experiments and implications for rock-ice avalanches. Cold Reg Sci Technol 69:70–90. https://doi.org/10.1016/j.coldregions.2011.07.001
Article
Google Scholar
Schwab JW, Geertsema M, Evans SG (2003) Catastrophic rock avalanches, west-central BC, Canada. In: 3rd Canadian Conference on Geotechnique and Natural Hazards. Edmonton, AB, pp 52–259
Sheridan P, Smith S, Brown A, Vosper S (2010) A simple height‐based correction for temperature downscaling in complex terrain. Meteorol Appl 17(3):329–339
Shreve RL (1968) The Blackhawk Landslide. The Geological Society of America, Inc., Boulder, Colorado
Sigfússon A, Thoroddsen Á, Aðalsteinsdóttir ÁK et al (2016) Hvalárvirkjun í Ófeigsfirði Matsskýrsla. Reykjavík, Iceland
Google Scholar
Smith MW, Carrivick JL, Quincey DJ (2015) Structure from motion photogrammetry in physical geography. Prog Phys Geogr 40:247–275. https://doi.org/10.1177/0309133315615805
Article
Google Scholar
Snavely N, Seitz SM, Szeliski R (2008) Modeling the world from Internet photo collections. Int J Comput Vis 80:189–210. https://doi.org/10.1007/s11263-007-0107-3
Article
Google Scholar
Sosio R (2015) Rock-Snow-Ice Avalanches. In: Davies T (ed) Landslide Hazards, Risks, and Disasters. p 191'240
Sosio R, Crosta GB, Chen JH, Hungr O (2012) Modelling rock avalanche propagation onto glaciers. Quat Sci Rev 47:23–40. https://doi.org/10.1016/j.quascirev.2012.05.010
Article
Google Scholar
Tost M, Cronin SJ, Procter JN (2014) Transport and emplacement mechanisms of channelised long-runout debris avalanches, Ruapehu volcano, New Zealand. Bull Volcanol 76:1–14. https://doi.org/10.1007/s00445-014-0881-z
Article
Google Scholar
Tussetschläger H, Brynjólfsson S, Brynjólfsson S et al (2020) Perennial snow patch detection based on remote sensing data on Tröllaskagi Peninsula, northern Iceland. JOKULL 69:103–128. https://doi.org/10.33799/jokull2019.69.103
Article
Google Scholar
Tveito OE, Førland E, Heino R, et al (2000) Nordic temperature maps. Oslo, Report 4 09/00
Vallance JW, Scott KM (1997) The Osceola Mudflow from Mount Rainier: sedimentology and hazard implications of a huge clay-rich debris flow. Bull Geol Soc Am 109:143–163. https://doi.org/10.1130/0016-7606(1997)109<0143:TOMFMR>2.3.CO;2
Article
Google Scholar
Varnes DJ (1978) Slope movement types and processes. Transp Res Board Spec Rep 11–33. In Special report 176: Landslides: Analysis and Control, Transportation Research Board, Washington, D.C.
Voight B, Sousa J (1994) Lessons from Ontake-san: a comparative analysis of debris avalanche dynamics. Eng Geol 38:261–297. https://doi.org/10.1016/0013-7952(94)90042-6
Article
Google Scholar
Walter F, Amann F, Kos A, Kenner R, Phillips M, de Preux A, Huss M, Tognacca C, Clinton J, Diehl T, Bonanomi Y (2020) Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology 351:106933
Article
Google Scholar
Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) “Structure-from-Motion” photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314. https://doi.org/10.1016/j.geomorph.2012.08.021
Article
Google Scholar
Xu Q, Shang Y, van Asch T, Wang S, Zhang Z, Dong X (2012) Observations from the large, rapid Yigong rock slide – debris avalanche, southeast Tibet. Can Geotech J 49:589–606. https://doi.org/10.1139/t2012-021
Article
Google Scholar