Skip to main content

Advertisement

Log in

A multi-method approach for the characterization of landslides in an intramontane basin in the Andes (Loja, Ecuador)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In the last several decades, population growth in the cities of the Andes has caused urban areas to expand into landslide-prone areas. Fatal landslides affecting urban settlements are especially frequent in cities located in the Neogene intramontane basins of the Andes. These basins have similar situations and include geographical and geological features that frequently generate ground instabilities. We studied the characteristics of the mass movements observed in these basins by carrying out a detailed analysis of four landslides that have occurred in the Loja Basin (Ecuador). This multi-method study integrated geophysical, geotechnical methods, mineralogical studies and analyses of precipitation time series. Our study characterizes the slope movements as active, slow-moving, complex earthslide earthflows. According to Differential GPS measurements, these landslides move at velocities of up to several metres per year. Electrical resistivity tomography profiles show that most of the landslides are mainly surficial. Time-series analyses of precipitation reveal that rainfall events that are not exceptionally intensive can reactivate these landslides. This characteristic and the development of these landslides on low-gradient slopes are explained using the results obtained from the geotechnical and mineralogical analyses. We find that the smectite clay minerals detected in the mobilized geological formations, combined with the tropical climate of the northern Andean region, induce the observed weak slope stability conditions. The conceptual model for the studied landslides may aid in assessing landslide-prone areas in Loja and other Neogene intramontane basins of the Andes and can help to mitigate the associated risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • ABEM (2010) Instruction Manual Terrameter SAS 4000/SAS 1000. ABEM Instrument AB, Sundbyberg 148 pp.

    Google Scholar 

  • Abidin HZ, Andreas H, Gumilar I, Fukuda Y, Pohan YE, Deguchi T (2011) Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat Hazards 59:1753–1771. doi:10.1007/s11069-011-9866-9

    Article  Google Scholar 

  • Acar M (2010) Determination of strain accumulation in landslide areas with GPS measurements. Sci Res Essays 5:763–768

    Google Scholar 

  • Acar M, Ozludemir MT, Erol S, Celik R, Ayan T (2008) Kinematic landslide monitoring with Kalman filtering. Nat Hazards Earth Syst Sci 8:213–221. doi:10.5194/nhess-8-213-2008

    Article  Google Scholar 

  • Alcántara-Ayala I, Oliver-Smith A (2014) ICL Latin-American network: on the road to landslide reduction capacity building. Landslides 11(2):315–318

    Article  Google Scholar 

  • Anbarasu K, Sengupta A, Gupta S, Sharma SP (2010) Mechanism of activation of the Lanta Khola landslide in Sikkim Himalayas. Landslides 7:135–147

    Article  Google Scholar 

  • Azañón JM, Azor A, Yesares J, Tsige M, Mateos RM, Nieto F, Delgado J, López-Chicano M, Martín W, Rodríguez-Fernández J (2010) Regional-scale high-plasticity clay-bearing formation as controlling factor on landslides in southeast Spain. Geomorphology 120:26–37. doi:10.1016/j.geomorph.2009.09.012

    Article  Google Scholar 

  • Baoping WEN, Haiyang CHEN (2007) Mineral compositions and elements concentrations as indicators for the role of groundwater in the development of landslide slip zones: a case study of large-scale landslides in the Three Gorges area in China. Earth Sci Front 14(6):98–106

    Article  Google Scholar 

  • de Bari C, Lapenna V, Perrone A, Puglisi C, Sdao F (2011) Digital photogrammetric analysis and electrical resistivity tomography for investigating the Picerno landslide (Basilicata Region, southern Italy). Geomorphology 133(1):34–46

    Article  Google Scholar 

  • Benac Č, Arbanas Ž, Jurak V, Oštrić M, Ožanić N (2005) Complex landslide in the Rječina Valley (Croatia): origin and sliding mechanism. Bull Eng Geol Environ 64(4):361

    Article  Google Scholar 

  • Bichler A, Bobrowsky P, Best M, Douma M, Hunter J, Calvert T, Burns R (2004) Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides 1(1):29–40

    Article  Google Scholar 

  • Brückl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88:149–159. doi:10.1016/j.enggeo.2006.09.004

    Article  Google Scholar 

  • Calcaterra S, Cesi C, Di Maio C, Gambino P, Merli K, Vallario M, Vassallo R (2012) Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in southern Apennines, Italy. Nat Hazards 61:257–266. doi:10.1007/s11069-010-9633-3

    Article  Google Scholar 

  • Colangelo G, Perrone A (2012) Geoelectrical tomography as an operative tool for emergency management of landslide: an application in Basilicata Region, Italy. Int J Geophys. doi:10.1155/2012/593268

    Google Scholar 

  • Colangelo G, Lapenna V, Loperte A, Perrone A, Telesca L (2008) 2D electrical resistivity tomographies for investigating recent activation landslides in Basilicata Region (southern Italy). Ann Geophys 51:275–285

    Google Scholar 

  • Coltorti M, Brogi A, Fabbrini L, Firuzabadì D, Pieranni L (2011) The sagging deep-seated gravitational movements on the eastern side of Mt. Amiata (Tuscany, Italy). Nat Hazards 59:191–208. doi:10.1007/s11069-011-9746-3

    Article  Google Scholar 

  • Cooper A (2008) The classification, recording, databasing and use of information about building damage caused by subsidence and landslides. Q J Eng Geol Hydrogeol 41:409–424. doi:10.1144/1470-9236/07-223

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Special Report 247:36–75

  • Dogan U, Oz D, Ergintav S (2013) Kinematics of landslide estimated by repeated GPS measurements in the Avcilar Region of Istanbul, Turkey. Stud Geophys Geod 57:217–232. doi:10.1007/s11200-012-1147-x

    Article  Google Scholar 

  • Erginal AE, Öztürk B, Ekinci YL, Demirci A (2009) Investigation of the nature of slip surface using geochemical analyses and 2-D electrical resistivity tomography: a case study from Lapseki area, NW Turkey. Environ Geol 58(6):1167

    Article  Google Scholar 

  • Galindo-Zaldívar J, Soto J, Ruano P, Tamay J, Lamas F, Guartán J, Azañón JM, Paladines A (2010) Geometría y estructuras de la cuenca neógena de Loja a partir de datos gravimétricos (Andes Ecuatorianos). Geogaceta 48:215–218

    Google Scholar 

  • Gili JA, Corominas J, Rius J (2000) Using global positioning system techniques in landslide monitoring. Eng Geol 55:167–192

    Article  Google Scholar 

  • Gillot EJ (1986) Some clay-related problems in engineering geology in North America. Clay Miner 21:261–278

    Article  Google Scholar 

  • Giordan D, Allasia P, Manconi A, Baldo M, Santangelo M, Cardinali M, Corazza A, Albanese V, Lollino G, Guzzetti F (2013) Morphological and kinematic evolution of a large earthflow: the Montaguto landslide, southern Italy. Geomorphology 187:61–79. doi:10.1016/j.geomorph.2012.12.035

    Article  Google Scholar 

  • Grana V, Tommasi P (2014) A deep-seated slow movement controlled by structural setting in marly formations of central Italy. Landslides 11:195–212. doi:10.1007/s10346-013-0384-6

    Article  Google Scholar 

  • Hibert C, Grandjean G, Bitri A, Travelletti J, Malet JP (2012) Characterizing landslides through geophysical data fusion: example of the La Valette landslide (France). Eng Geol 128:23–29. doi:10.1016/j.enggeo.2011.05.001

    Article  Google Scholar 

  • Hungerbühler D, Steinmann M, Winkler W, Sewards D, Egüez A, Peterson DE, Helg U, Hammer C (2002) Neogene stratigraphy and Andean geodynamics of southern Ecuador. Earth-Science Rev 57:75–124. doi:10.1016/S0012-8252(01)00071-X

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194

    Article  Google Scholar 

  • Ibadango C, Soto J, Tamay J, Escudero P, Porter M (2005) Mass movements in the Loja Basin—Ecuador, South America. Proceedings, Int Conf Landslide Risk Management. Vancouver 10:1–7

  • Instituto Nacional de Investigación Geológico Minero y Metalúrgico (INIGEMM), (2013) Mapa de susceptibilidad por movimientos en masa del Ecuador, escala 1:1,000,000. Technical report. Unpublished

  • Irigaray C, Palenzuela JA (2013) Análisis de la actividad de movimientos de ladera mediante láser escáner terrestre en el suroeste de la Cordillera Bética (España) Landslide activity analysis using terrestrial laser scanning at southwest of the Betic Cordillera (Spain). Revista de Geología Aplicada a la Ingeniería y al Ambiente 31:53–67

    Google Scholar 

  • Irigaray C, Lamas F, El Hamdouni R, Fernández T, Chacón J (2000) The importance of the precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat Hazards 21:65–81. doi:10.1023/A:1008126113789

    Article  Google Scholar 

  • Jiang JW, Xiang W, Rohn J, Zeng W, Schleier M (2015) Research on water–rock (soil) interaction by dynamic tracing method for Huangtupo landslide, Three Gorges Reservoir, PR China. Environ Earth Sci 74(1):557–571

    Article  Google Scholar 

  • Kennerley JB (1980) Outline of the geology of Ecuador. Overseas Geol Miner Resour 55:17

    Google Scholar 

  • Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Rizzo E, Sdao F (2003) High-resolution geolectrical tomographies in the study of Giarrossa landslide (southern Italy). Bull Eng Geol Environ 62:259–268. doi:10.1007/s10064-002-0184-z

    Article  Google Scholar 

  • Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Rizzo E, Sdao F (2005) 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. Geophysics 70:11–18. doi:10.1190/1.1926571

    Article  Google Scholar 

  • Litherland M, Aspden JA, Jemielita RA (1994) The metamorphic belts of Ecuador. Brit Geol Surv 11:147

    Google Scholar 

  • Liu GY, Zhu YZ, Zhou RS (2005) A new approach of single epoch GPS positioning for landslide monitoring. Acta Seismol Sín 18:427–434. doi:10.1007/s11589-005-0020-1

    Article  Google Scholar 

  • MacEwan DMC, Wilson MJ (1980) Interlayer and intercalation complexes of clay minerals. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification, Mineralogical Society Monograph 5. Mineralogical Society, London, p 197–248

  • Malet JP, Maquaire O, Calais E (2002) The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43:33–54

    Article  Google Scholar 

  • Marocco R, Eguez A, Lavenu A, Noblet C, Baudino R, Winter T (1994) Las cuencas intramontanosas neogenas del Ecuador. Resúmenes de conferencias ORSTOM (Ecuador). Ediciones ORSTOM, Quito, pp 135–138

    Google Scholar 

  • Merritt AJ, Chambers JE, Murphy W, Wilkinson PB, West LJ, Gunn DA, Meldrum PI, Kirkham M, Dixon N (2014) 3D ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods. Landslides 11(4):537–550

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd, vol 378. Oxford university press, Oxford

    Google Scholar 

  • Mora P, Baldi P, Casula G, Fabris M, Ghirotti M, Mazzinie E, Pesci A (2003) Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca’di Malta landslide (northern Apennines, Italy). Eng Geol 68:103–121

    Article  Google Scholar 

  • Naudet V, Lazzari M, Perrone A, Loperte A, Piscitelli S, Lapenna V (2008) Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo Village (Basilicata, southern Italy). Eng Geol 98(3):156–167

    Article  Google Scholar 

  • Noferini L, Pieraccini M, Mecatti D, Macaluso G, Atzeni C, Mantovani M, Marcato G, Pasuto A, Silvano S, Tagliavini F (2007) Using GB-SAR technique to monitor slow moving landslide. Eng Geol 95:88–98. doi:10.1016/j.enggeo.2007.09.002

    Article  Google Scholar 

  • Palenzuela JA, Jiménez-Perálvarez JD, El Hamdouni R, Alameda-Hernández P, Chacón J, Irigaray C (2015) Integration of LiDAR data for the assessment of activity in diachronic landslides: a case study in the Betic Cordillera (Spain). Landslides. doi:10.1007/s10346-015-0598-x

    Google Scholar 

  • Perrone A, Lapenna V, Piscitelli S (2014) Electrical resistivity tomography technique for landslide investigation: a review. Earth-Science Rev 135:65–82. doi:10.1016/j.earscirev.2014.04.002

    Article  Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40:927–930. doi:10.1130/G33217.1

    Article  Google Scholar 

  • Proyecto Multinacional Andino (PMA): Geociencias para las Comunidades Andinas (2007) Movimientos en masa en la Región Andina: Una guía para la evaluación de amenazas. Servicio Nacional de Geología y Minería, Publicación Geológica Multinacional, No. 4, 432 p., 1 cd-rom

  • Regmi AD, Yoshida K, Dhital MR, Devkota K (2013) Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal. Landslides 10(1):1–13

    Article  Google Scholar 

  • Rizzo V (2002) GPS monitoring and new data on slope movements in the Maratea Valley (Potenza, Basilicata). Phys Chem Earth 27:1535–1544. doi:10.1016/S1474-7065(02)00174-2

    Article  Google Scholar 

  • Rowe PW, Barden L (1966) A new consolidation cell. Geotechnique 16(2):162–170

    Article  Google Scholar 

  • Sassa K (2004) The international consortium on landslides. Landslides 1(1):91–94

    Article  Google Scholar 

  • Sassa K (2012) ICL strategic plan 2012–2021 to create a safer geo-environment. Landslides 9(2):155–164

    Article  Google Scholar 

  • Sdao F, Pascale S, Rutigliano P (2005) Geomorphological features and monitoring of a large and complex landslide near Avigliano urban area (south Italy). Adv Geosci 2:97–101. doi:10.5194/adgeo-2-97-2005

    Article  Google Scholar 

  • Shuzui H (2001) Process of slip-surface development and formation of slip-surface clay in landslides in Tertiary volcanic rocks, Japan. Eng Geol 61(4):199–220

    Article  Google Scholar 

  • Strauhal T, Zangerl C, Fellin W, Holzmann M, Engl DA, Brandner R, Tropper P, Tessadri R (2017) Structure, mineralogy and geomechanical properties of shear zones of deep-seated rockslides in metamorphic rocks (Tyrol, Austria). Rock Mech Rock Eng. doi:10.1007/s00603-016-1113-y

    Google Scholar 

  • Tagliavini F, Mantovani M, Marcato G, Pasuto A, Silvano S (2007) Validation of landslide hazard assessment by means of GPS monitoring technique – a case study in the dolomites (Eastern Alps, Italy). Nat Hazards Earth Syst Sci 7:185–193. doi:10.5194/nhess-7-185-2007

    Article  Google Scholar 

  • Travelletti J, Malet JP, Hibert C, Grandjean G (2009) Integration of geomorphological, geophysical and geotechnical data to define the 3D morpho-structure of the La Valette mudslide, Ubaye Valley, French Alps. Proc Int Conf Landslide Process from geomorpho- Log Mapp to Dyn Model 203–208

  • Wang GQ (2012) Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations. Landslides 9(1):117–130

    Article  Google Scholar 

  • Wen BP, Duzgoren-Aydin NS, Aydin A (2004) Geochemical characteristics of the slip zones of a landslide in granitic saprolite, Hong Kong: implications for their development and microenvironments. Environ Geol 47(1):140–154

    Article  Google Scholar 

  • Yilmaz I, Karacan E (2002) A landslide in clayey soils: an example from the Kızıldag region of the Sivas-Erzincan Highway (Sivas-Turkey). Environ Geosci 9(1):35–42

    Article  Google Scholar 

  • Yin Y, Wang H, Gao Y, Li X (2010a) Real-time monitoring and early warning of landslides at relocated Wushan town, the Three Gorges Reservoir, China. Landslides 7(3):339–349

    Article  Google Scholar 

  • Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010b) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 7(3):359–365

    Article  Google Scholar 

  • Zárate B (2011) Monitoreo de movimientos de ladera en el sector de San Pedro de Vilcabamba mediante procedimientos GPS. Maskana 2:17–25

    Google Scholar 

  • Zhou P, Zhou B, Guo J, Li D, Ding Z, Feng Y (2005) A demonstrative GPS-aided automatic landslide monitoring system in Sichuan Province. J Glob Position Syst 4:184–191. doi:10.5081/jgps.4.1.184

    Article  Google Scholar 

Download references

Acknowledgements

This PhD study is supported through a grant awarded by the Ministry of Higher Education, Science, Technology and Innovation (SENESCYT) under the scholarship program ‘Open Call 2012 Second Phase’ of the government of Ecuador. We thank Diego Jara and Daniel Bravo for field assistance. J.P. Galve acknowledges funding by the Spanish Ministry of Economy and Competitiveness through the ‘Juan de la Cierva’ Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Soto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, J., Galve, J.P., Palenzuela, J.A. et al. A multi-method approach for the characterization of landslides in an intramontane basin in the Andes (Loja, Ecuador). Landslides 14, 1929–1947 (2017). https://doi.org/10.1007/s10346-017-0830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-017-0830-y

Keywords

Navigation