Skip to main content

Advertisement

Log in

Multidisciplinary approach for the characterization of a deep-seated landslide in a semi-arid region (Cañón de Yerbabuena, San Luis Potosí, Mexico)

  • Recent Landslides
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Multidisciplinary approaches for the characterization of deep-seated landslides (DSLs) are useful in comprehending the internal and external dynamics of the phenomena. This paper examines and characterizes the active Cañón de Yerbabuena DSL (in Ahualulco, San Luis Potosi, Mexico), for which there are over 30 years of damage records to Federal Highway 63. Hence, the integrated study carried out includes lithological and structural characterization, geomorphological mapping, Persistent Scatterer Interferometry (PSI) analysis, and electrical geophysical surveys. The slope deformation extends over the highly weathered and fractured volcanic rocks of the Ahualulco Volcanic Complex in an area comprising 741,000 m2 and mobilizes an estimated rock volume of 6,950,459 m3. Geomorphological features within the DSL include a counter-scarp, minor scarps, tension cracks, small landslides, avalanche breccias, toppling, and colluvial deposits. Furthermore, the velocity rate in the upper section of the slope reaches up to 10 mm/year with a linear behavior that changes to a faster non-linear deformation (up to 30 mm/year) in the middle-lower part of the DSL. This change is the result of a multiple-complex dynamic linked to the presence of two normal faults fragmenting the middle section of the slope and an interbedded volcaniclastic clayey-siltstone layer acting as a possible sliding plane; the latter being defined by a resistivity survey. The acceleration of the velocity rates at the foot of the DSL are linked to torrential rains in the area and cause the most severe damage to the highway. Furthermore, the general slow deformation within the DSL is triggered by severe erosion from the seasonal river at the foot and the run-off on both flanks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agliardi F, Crosta GB, Frattini P (2012) Slow rock-slope deformation. In: Clague JJ, Stead D (eds) Landslides: types, mechanisms and modeling. Cambridge University Press, Cambridge, pp 207–221

    Chapter  Google Scholar 

  • Aranda-Gómez JJ, Housh TB, Luhr JF, et al (2005) Reactivation of the San Marcos fault during Mid-to-Late Tertiary extension, Chihuahua, Mexico. In: Special Paper 393: the Mojave-Sonora Megashear hypothesis: development, assessment, and alternatives. Geological Society of America, pp 509–521

  • Aslan G, Foumelis M, Raucoules D, de Michele M, Bernardie S, Cakir Z (2020) Landslide mapping and monitoring using Persistent Scatterer Interferometry (PSI) technique in the French Alps. Remote Sens 12:1305. https://doi.org/10.3390/rs12081305

    Article  Google Scholar 

  • Aucelli PPC, Casciello E, Cesarano M, Perriello Zampelli S, Rosskopf CM (2013) A deep, stratigraphically and structurally controlled landslide: the case of Mount La Civita (Molise, Italy). Landslides 10:645–656. https://doi.org/10.1007/s10346-012-0351-7

    Article  Google Scholar 

  • Berti M, Corsini A, Franceschini S, Iannacone JP (2013) Automated classification of persistent scatterers interferometry time series. Nat Hazards Earth Syst Sci 13:1945–1958. https://doi.org/10.5194/nhess-13-1945-2013

    Article  Google Scholar 

  • Bianchini S, Herrera G, Mateos R, Notti D, Garcia I, Mora O, Moretti S (2013) Landslide activity maps generation by means of Persistent Scatterer Interferometry. Remote Sens 5:6198–6222. https://doi.org/10.3390/rs5126198

    Article  Google Scholar 

  • Castillo-Dios de León JP, González-Monsivais P (2000) Ahualulco F14-A73. Carta Geológica-Minera, Servicio Geológico Mexicano, scale 1:50000

  • Ciampalini A, Raspini F, Bianchini S, Frodella W, Bardi F, Lagomarsino D, di Traglia F, Moretti S, Proietti C, Pagliara P, Onori R, Corazza A, Duro A, Basile G, Casagli N (2015) Remote sensing as tool for development of landslide databases: the case of the Messina Province (Italy) geodatabase. Geomorphology 249:103–118. https://doi.org/10.1016/j.geomorph.2015.01.029

    Article  Google Scholar 

  • Cigna F, Bateson LB, Jordan CJ, Dashwood C (2014) Simulating SAR geometric distortions and predicting persistent scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sens Environ 152:441–466. https://doi.org/10.1016/j.rse.2014.06.025

    Article  Google Scholar 

  • Confuorto P, Di Martire D, Infante D et al (2019) Monitoring of remedial works performance on landslide-affected areas through ground- and satellite-based techniques. CATENA 178:77–89. https://doi.org/10.1016/j.catena.2019.03.005

    Article  Google Scholar 

  • Copernicus (2018) Sentinel data 2014–2018. Retrieved from ASF DAAC, between February and March 2018, processed by ESA

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. Transportation Research Board, US National Academy of Sciences, Special Report 247:36–75

  • Delgado Blasco J, Foumelis M, Stewart C, Hooper A (2019) Measuring urban subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens 11:129. https://doi.org/10.3390/rs11020129

    Article  Google Scholar 

  • Fidolini F, Pazzi V, Frodella W, Morelli S, Fanti R (2015) Geomorphological characterization, monitoring and modeling of the Monte Rotolon complex landslide (Recoaro Terme, Italy). In: Lollino G, Giordan D, Crosta GB et al (eds) Engineering geology for society and territory, vol 2. Springer International Publishing, Cham, pp 1311–1315

    Chapter  Google Scholar 

  • Godoy B, Rodríguez I, Pizarro M, Rivera G (2017) Geomorphology, lithofacies, and block characteristics to determine the origin, and mobility, of a debris avalanche deposit at Apacheta-Aguilucho Volcanic Complex (AAVC), northern Chile. J Volcanol Geotherm Res 347:136–148. https://doi.org/10.1016/j.jvolgeores.2017.09.008

    Article  Google Scholar 

  • Herrera G, Gutiérrez F, García-Davalillo JC, Guerrero J, Notti D, Galve JP, Fernández-Merodo JA, Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens Environ 128:31–43. https://doi.org/10.1016/j.rse.2012.09.020

    Article  Google Scholar 

  • Hooper A, Bekaert D, Spaans K, Arıkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514–517:1–13. https://doi.org/10.1016/j.tecto.2011.10.013

    Article  Google Scholar 

  • Hooper AJ, Bekaert D, Spaans K (2013) StaMPS/MTI manual version 3.3b1. School of Earth and Environment, University of Leeds

  • INEGI (2010) Censo de Población y Vivienda 2010 [WWW Document]. URL http://wwwbetainegiorgmx/proyectos/ccpv/2010/. Accessed 1 Jan 2019

  • Interpex, Ltd (2008) IX1D v2 instruction manual. Interpex Limited, USA, pp 1–67

  • IRIS Instruments (2016) Syscal R2. Applications and technical characteristics. http://www.iris-instruments.com/syscal-r2.html. Accessed 15 Apr 2019

  • Labarthe-Hernández G, Jiménez-López LS, Aranda-Gómez JJ (1995) Reinterpretación de la geología del centro volcánico de la Sierra de Ahualulco, S.L.P. UASLP, Instituto de Geología, Folleto Técnico 121:30

  • LEE (2016) Soil Moisture Meter, model PMS-714. Lutron Electronic Enterprise CO., LTD. http://www.lutron.com.tw. Accessed 15 Apr 2019

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Meisina C, Zucca F, Notti D, Colombo A, Cucchi A, Savio G, Giannico C, Bianchi M (2008) Geological interpretation of PSInSAR data at regional scale. Sensors 8:7469–7492. https://doi.org/10.3390/s8117469

    Article  Google Scholar 

  • Méndez-Montealvo HM (1998) Actualización Geohidrológica del Valle de Ahualulco en el Estado de San Luis Potosí. BS Thesis, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico

  • Michoud C, Baumann V, Lauknes TR, Penna I, Derron MH, Jaboyedoff M (2016) Large slope deformations detection and monitoring along shores of the Potrerillos dam reservoir, Argentina, based on a small-baseline InSAR approach. Landslides 13:451–465. https://doi.org/10.1007/s10346-015-0583-4

    Article  Google Scholar 

  • Muñiz-Jáuregui JA, Hernández-Madrigal VM (2012) Zonificación de procesos de remoción en masa en puerto vallarta, Jalisco, mediante combinación de análisis multicriterio y método heurístico. Rev Mex Cienc Geol 29:103–114

  • Nguyen LC, Tien PV, Do T-N (2020) Deep-seated rainfall-induced landslides on a new expressway: a case study in Vietnam. Landslides 17:395–407. https://doi.org/10.1007/s10346-019-01293-6

    Article  Google Scholar 

  • Nieto-Samaniego ÁF, Alaniz-Álvarez SA, Camprubí í Cano A (2005) La Mesa Central de México: estratigrafía, estructura y evolución tectónica cenozoica. Bol Soc Geol Mex LVII:285–318

    Article  Google Scholar 

  • Notti D, Davalillo JC, Herrera G, Mora O (2010) Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Natural Hazards Earth Syst Sci 10:1865–1875. https://doi.org/10.5194/nhess-10-1865-2010

    Article  Google Scholar 

  • Pallares-Ramos C (2001) Estratigrafía y Estructura de las Rocas Volcánicas al Norte del Campo Volcánico de San Luis Potosí. BS Thesis, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico

  • Pánek T, Klimeš J (2016) Temporal behavior of deep-seated gravitational slope deformations: a review. Earth Sci Rev 156:14–38. https://doi.org/10.1016/j.earscirev.2016.02.007

    Article  Google Scholar 

  • Pazzi V, Morelli S, Fanti R (2019) A review of the advantages and limitations of geophysical investigations in landslide studies. Int J Geophys 2019:1–27. https://doi.org/10.1155/2019/2983087

    Article  Google Scholar 

  • Righini G, Pancioli V, Casagli N (2012) Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int J Remote Sens 33:2068–2096. https://doi.org/10.1080/01431161.2011.605087

    Article  Google Scholar 

  • SAGARPA (2018a) Boletín Meteorológico (pronóstico del 4 al 5 de septiembre). In: Boletín 001_septiembre_2018. https://www.gob.mx/cms/uploads/attachment/file/386154/Boletin_Meteorologico_del_4_al_5_de_septiembre__001_septiembre_2018.pdf. Accessed 6 Dec 2018

  • SAGARPA (2018b) Boletín Meteorológico (pronóstico del 8 al 10 de septiembre). In: Boletín 004_septiembre_2018. https://www.gob.mx/cms/uploads/attachment/file/387683/Boletin_Meteorologico_del_8_al_10_de_septiembre__004_septiembre_2018.pdf. Accessed 6 Dec 2018

  • SMN (2018) Tormentas intensas, actividad eléctrica y granizo, se prevén para Coahuila, Nuevo León, Tamaulipas, San Luis Potosí y Chiapas. https://www.gob.mx/smn/prensa/tormentas-intensas-actividad-electrica-y-granizo-se-preven-para-coahuila-nuevo-leon-tamaulipas-san-luis-potosi-y-chiapas-174000?idiom=es. Accessed 6 Dec 2018

  • Ter-Stepanian G (1977) Types of compound and complex landslides. Bull Int Assoc Eng Geol 16:72–74

    Article  Google Scholar 

  • Tristán-González M (2008) Evolución Tectono-Volcánica durante el Paleógeno en la Porción Sur-Oriental de la Mesa Central. PhD Thesis, Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Tristán-González M, Aguirre-Díaz GJ, Labarthe-Hernández G, Torres-Hernández JR, Bellon H (2009) Post-Laramide and pre-basin and range deformation and implications for Paleogene (55–25 Ma) volcanism in Central Mexico: a geological basis for a volcano-tectonic stress model. Tectonophysics 471:136–152. https://doi.org/10.1016/j.tecto.2008.12.021

    Article  Google Scholar 

  • Veci L, Lu J, Prats-Iraola P, et al (2014) The Sentinel-1 Toolbox. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 1–3

  • Villalpando F, Tuxpan J, Ramos-Leal JA, Carranco-Lozada S (2019) New framework based on fusion information from multiple landslide data sources and 3D visualization. J Earth Sci 31:159–168. https://doi.org/10.1007/s12583-019-1243-8

    Article  Google Scholar 

  • Villaseñor-Reyes CI (2019) Deformaciones Gravitacionales Profundas de Ladera en México: Detección y Caracterización del Fenómeno a través de la Técnica PSI (Persistent Scatterer Interferometry). PhD Thesis, Instituto Potosino de Investigación Científica y Tecnológica

  • Villaseñor-Reyes CI, Dávila-Harris P, Hernández-Madrigal VM, Figueroa-Miranda S (2018) Deep-seated gravitational slope deformations triggered by extreme rainfall and agricultural practices (eastern Michoacan, Mexico). Landslides 15:1867–1879. https://doi.org/10.1007/s10346-018-1031-z

    Article  Google Scholar 

  • WP/WLI (The International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory) (1990) A suggested method for reporting a landslide. Bull Int Assoc Eng Geol 41:5–12. https://doi.org/10.1007/BF02590201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Irene Villaseñor-Reyes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villaseñor-Reyes, C.I., Dávila-Harris, P. & Delgado-Rodríguez, O. Multidisciplinary approach for the characterization of a deep-seated landslide in a semi-arid region (Cañón de Yerbabuena, San Luis Potosí, Mexico). Landslides 18, 367–381 (2021). https://doi.org/10.1007/s10346-020-01497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-020-01497-1

Keywords

Navigation