Skip to main content
Log in

Complex landslide in the Rječina valley (Croatia): origin and sliding mechanism

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This paper discusses the development of the Grohovo landslide on the north-eastern slope of the Rječina valley, the largest active landslide along the Croatian part of the Adriatic Sea coast. This complex retrogressive landslide was reactivated in December 1996. Thirteen separate slide bodies have been identified. The slide surface is considered to be on the upper flysch bedrock. Monitoring indicated that the magnitude of displacements was very different in time and space. The maximum movements were recorded on the upper part of the slope. The limestone mega-block and separated rocky blocks on top of the slope have also moved, which is not a typical phenomenon of the flysch slopes in the area of Rijeka.

Résumé

L’article décrit l’évolution du glissement de Grohovo, sur les pentes nord-est de la vallée de Rjecina. Il s’agit du plus important glissement actif le long de la partie croate de la côte adriatique. Ce glissement complexe, en évolution régressive, a été réactivé en décembre 1996. Treize unités disjointes en rupture ont été identifiées. La surface de glissement est supposée se situer au contact du flysch supérieur constituant le substratum. L’instrumentation mise en place a montré la diversité dans le temps et l’espace des valeurs de déplacements. Les mouvements les plus importants ont été enregistrés en partie supérieure de la pente. Une importante masse rocheuse calcaire et des blocs isolés au sommet de la pente se sont aussi déplacés, ce qui ne correspond pas à des phénomènes typiques sur les pentes de flysch de la région de Rjeka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anderson H, Jackson J (1987) Active tectonics of the Adriatic region. Geophysics Journal 91:937–983

    Article  Google Scholar 

  • Antoine P, Giraud A (1995) Typologie des Mouvements de Versants dans un Contexte Operationnel. Bulletin IAEG 51:57–62

    Google Scholar 

  • Benac Č, Arbanas Ž, Jardas B, Kasapović S, Jurak V (1999) Complex landslide in the Rječina river valley. Rudarsko-geološko-naftni zbornik 11:81–90 (in Croatian)

  • Benac Č, Arbanas Ž, Jurak V, Kasapović S, Dujmić D, Jardas B, Pavletić Lj (2000) Landslide Grohovo-complex landsliding in the valley of the Rječina river. In: Proceedings of 2nd Croatian Geological Congress. Cavtat, Croatia, pp 517–523 (in Croatian)

  • Benac Č, Arbanas Ž, Jardas B, Jurak V, Kovačević SM (2002) Complex landslide in the Rječina river valley (Croatia): results and monitoring. In: Ribar J, Stemberk J, Wagner P (eds) Landslides, Proceedings of the 1st European Conference on Landslides, Prague, Czech Republic, pp 487–492. A.A. Balkema Publishers, Lisse-Abingdon-Exton-Tokyo

  • Bishop AW (1955) The use of the slip circle in the stability analysis of slopes. Geotechnique 5(1):7–17

    Google Scholar 

  • Blašković I (1997) The helicoidal fault system of Vinodol (Croatia) and their genesis. Geologica Croatica 50(1):49–56

    Google Scholar 

  • Blašković I (1999) Tectonics of part of the Vinodol valley within the model of the continental crust subduction. Geologia Croatica 52(2):153–189

    Google Scholar 

  • Casson B, Delacourt C, Baratoux D, Allemand P (2003) Seventeen years of the “La Clapiere” landslide evolution analysed from ortho-rectified aerial photographs. Engineering Geology 68(1–2):123–139

    Article  Google Scholar 

  • Chowdhury RN, Flentje P (2003) Role of slope reliability analysis in landslide risk menagement. Bull Eng Geol Environ 62(1):41–46

    Google Scholar 

  • Coe JA, Ellis WL, Godt JW, Savage WZ, Savage JE, Michael JA, Kibler JD, Powers PS, Lidke DJ, Debray S (2003) Seasonal movement of the Slumgullion landslide determined from global positioning system surveys and field instrumentation, July 1998–March 2002. Eng Geol 68(1–2):67–101

    Article  Google Scholar 

  • Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the permanent scatterers technique. Eng Geol 68(1–2):3–14

    Article  Google Scholar 

  • Crozier MJ (1984) Field assessment of slope instability. In: Brunsen D, Prior DB (eds) Slope instability. John Wiley & Sons, New York, pp 103–142

    Google Scholar 

  • Del Ben A, Finetti I, Rebez A, Slejko D (1991) Seismicity and seismotectonics at the Alps - Dinarides contact. Bollettino di Geofisica Teorica ad Applicata XXXIII(130–131):155–176

    Google Scholar 

  • GEOSLOPE (1998) User’s guide slope/W for slope stability analysis, Calgary

  • Herak MI (1986) A new concept of geotectonics of the Dinarides. Acta Geologica 16(1):1–42

    Google Scholar 

  • Herak MA, Herak D, Markušić S (1996) Revision of the earthquake catalogue and seismicity of Croatia, 1902–1992. Terra Nova 8:86–94

    Article  Google Scholar 

  • IAEG (1990) Suggested nomenclature for landslides. Bulletin IAEG 41:13–16

    Google Scholar 

  • Keaton JR, Degraff JV (1996) Surface observation and geologic mapping. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Special report 247. National Academy Press, Washington, DC, p 195

    Google Scholar 

  • Moser M (2002) Geotechnical aspects of landslides in the Alps. In: Ribar J, Stemberk J, Wagner P (eds) Landslides Proceedings of the 1st European Conference on Landslides, Prague, Czech Republic. A.A. Balkema Publishers, Lisse-Abingdon-Exton-Tokyo, pp 23–43

  • Popescu ME (1994) A suggested method for reporting landslide causes. Bulletin IAEG 50:71–74

    Google Scholar 

  • Poisel R, Eppensteiner W (1988) Gang und Gehwerk einer Massenbewegung. Teil 1: Geomechanik des Systems Hart auf Weich. Felsbau 6(4):189–194

    Google Scholar 

  • Prelogović E, Kuk V, Jamičić D, Aljinović B, Marić K (1995) Seismotectonic activity of the Kvarner area. In: Proceedings of 1st Croatian Geological Congress Vol 2:487–490, Institute of Geology, Zagreb. (in Croatian)

  • Skempton AW, Hutchinson JN (1969) Stability of natural slopes and embankment foundations, State of the art report: 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, pp 291–340

  • Spencer E (1967) A method of analysis of the stability of embankments assuming parallel interslice forces. Geotechnique 17(1):11–26

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movements, types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and controls, report. National Academy of Science, Washington DC, 176:11–33

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Čedomir Benac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benac, Č., Arbanas, Ž., Jurak, V. et al. Complex landslide in the Rječina valley (Croatia): origin and sliding mechanism. Bull Eng Geol Environ 64, 361–371 (2005). https://doi.org/10.1007/s10064-005-0002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-005-0002-5

Keywords

Motsclés

Navigation