Skip to main content

Advertisement

Log in

The Effect on Morpho-Physiological and Biochemical Characteristics of Cauliflower and Cabbage Harvested at Different Times Under Flooding Stress Conditions

  • Original Article / Originalbeitrag
  • Published:
Journal of Crop Health Aims and scope Submit manuscript

Abstract

Climate change-induced flooding has a profound impact on plant growth and development, posing a significant abiotic stressor that significantly affects the yield and quality of cabbage and cauliflower. In many regions, cabbage and cauliflower is severely affected by flooding stress during the cultivation period. This study aimed to assess and compare the effects of flooding stress on the morpho-physiological and biochemical properties of cabbage and cauliflower at different harvest times. In this context, cabbage and cauliflower seedlings were exposed to excess water, and essential parameters, such as photosynthesis, antioxidant enzymes, chlorophyll fluorescence, and certain agronomic features. As a result of flooding stress, significant decreases occurred in agronomic features were measured. The results showed significant decreases in agronomic parameters, including aboveground and underground fresh and dry weights, as well as leaf area. It was observed that the damage rate of plants increased as the exposure time to flooding stress increased. In our experiment, proline, an essential amino acid, significantly increased under flooding stress at different harvest times. Furthermore, the activity of catalase and ascorbate peroxidases, which are reactive oxygen species (ROS), also significantly increased in our investigation. In our experiment, we observed significant increases in proline, an essential amino acid, under flooding stress at different harvest times. Additionally, the activity of catalase and ascorbate peroxidases, which are reactive oxygen derivatives (ROS), also significantly increased. Furthermore, decreases were noted in stomatal conductivity, photosynthetic efficiency, leaf temperature (°C), and chlorophyll fluorescence levels. The application of flooding stress at various harvest times had a negative impact on the growth and development of cabbage and cauliflower plants, leading to significant alterations in their physiological and biochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal S, Pandey V (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol plant 48(4):555–560. https://doi.org/10.1023/B:BIOP.0000047152.07878.e7

    Article  CAS  Google Scholar 

  • Aloni B, Rosenstein G (1982) Effect of flooding on tomato cultivars: The relationship between proline accumulation and other morphological and physiological changes. Physiol Plant 56:513–517

    Article  Google Scholar 

  • Angelini R, Federico R (1989) Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. J Plant Physiol 135(2):212–217. https://doi.org/10.1016/S0176-1617(89)80179-8

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Mehmood S (1990) Effects of waterlogging on growth and some physiological parameters of four Brassica species. Plant Soil 121(2):203–209

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89

    Article  CAS  PubMed  Google Scholar 

  • Barber A, Müller C (2021) Drought and subsequent soil flooding affect the growth and metabolism of savoy cabbage. IJMS. https://doi.org/10.3390/ijms222413307

    Article  PubMed  PubMed Central  Google Scholar 

  • Barickman TC, Simpson CR, Sams CE (2019) Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plants 8(160):2–15. https://doi.org/10.3390/plants8060160

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Biswal UC, Biswal B, Raval MK (2003) Chloroplast Biogenesis: From proplastid to gerontoplast. Springer, Dordrecht

    Book  Google Scholar 

  • Blokhina OB, Chirkova TV, Fagerstedt KV (2001) Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot 52(359):1179–1190. https://doi.org/10.1093/jexbot/52.359.1179

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Can H (2023) Melatonin application at different doses changes the physiological responses in favor of cabbage seedlings (brassica oleracea var. capitata) against flooding stress. Gesunde Pflanz. https://doi.org/10.1007/s10343-023-00873-w

    Article  Google Scholar 

  • Canaani O, Havaux M,  Malkin S (1986) Hydroxylamine, hydrazine and methylamine donate electrons to the photooxidizing side of Photosystem II in leaves inhibited in oxygen evolution due to water stress. Biochim Biophys Acta 851(1):151–155

    Article  CAS  Google Scholar 

  • Casierra-Posada F, Cutler J (2017) Photosystem II fluorescence and growth in cabbage plants (Brassica Oleracea Var. Capitata) grown under waterlogging stress. Artículo Cien 20(2):321–328

    Google Scholar 

  • Chance B (1955) Assay of catalase and peroxidase. Meth Enzymol 2:765–775. https://doi.org/10.1016/S0076-6879(55)02300-8

    Article  Google Scholar 

  • Dorostkar S, Dadkhodaie A, Heidari B (2015) Evaluation of grain yield indices in hexaploid wheat genotypes in response to drought stress. Arch Agron Soil Sci 61(3):397–413. https://doi.org/10.1080/03650340.2014.93685

    Article  CAS  Google Scholar 

  • Durak E, Yıldırım M  (2017) Farklı sulama düzeylerinin brokoli (Brassica oleracea l.Cv. Beaumont ) bitkisinin verim ve kalite özellikleri üzerine etkisi. Çomü Zirat Fakültesi. Dergisi 5(1):13–20

    Google Scholar 

  • Ellouzi H, Zorrig W,  Amraoui S, Oueslati S, Abdelly C, Rabhi M, Siddique KHM, Hessini  K (2021) Seed-priming with H2O2 alleviates subsequent salt stress by preventing ROS production and amplifying antioxidant defense in cauliflower seeds and seedlings. Sci Hortic. https://doi.org/10.1016/j.scienta.2021.110360

    Article  Google Scholar 

  • Else MA, Janowiak F, Atkinson CJ, Jackson MB (2009) Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann Bot 103:313–323

    Article  CAS  PubMed  Google Scholar 

  • Fan HF, Du CX, Ding L, Xu YL (2014) Exogenous nitric oxide promotes waterlogging tolerance as related to the activities of antioxidant enzymes in cucumber seedlings. Russ J Plant Physiol 61:366–373

    Article  CAS  Google Scholar 

  • FAO (2022) Food and Agriculture Organization, Crop production statistics. http://www.fao.org/faostat/en/#data/QC. Accessed 26 Apr 2022

  • Fıstıkoglu O, Biberoglu E (2008) Küresel iklim değişikliğinin su kaynaklarına etkisi ve uyum önlemleri. Paper presented at the TMMOB İklim Değişimi Sempozyumu, Ankara

    Google Scholar 

  • Francisco M, Tortosa M, del Carmen M‑BM, Velasco P, García-Viguera C, Moreno DA (2017) Nutritional and phytochemical value of Brassica crops from the agri-food perspective. Ann Appl Biol 170(2):273–285

    Article  CAS  Google Scholar 

  • Funck D, Gudrun W, Baumgarten L, Forlani G (2012) Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biol 12(191):2–12

    Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol Biochem 141:312–322. https://doi.org/10.1104/pp.106.077073

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1981) Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts, The role of superoxide and hydroxyl radicals. FEBS Lett 128(2)

  • Hare PD, Cress WA, van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exp Bot 50(333):413–434

    CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants. https://doi.org/10.3390/antiox9080681

    Article  PubMed  PubMed Central  Google Scholar 

  • Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84(2):450–455. https://doi.org/10.1104/pp.84.2.450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He JX, Wang J, Liang HG (1995) Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiol Plant 93(4):771–777

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  • Irfan M, Hayat S, Hayat Q,  Shaheena A, Ahmad A (2010) Physiological and biochemical changes in plants under waterlogging. Protoplasma 241(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Kamrani M, Hoseini Y, Ebadollahi A (2018) Evaluation for heat stress tolerance in durum wheat genotypes using stress tolerance indices. Arch Agron Soil Sci 64(1):38–45. https://doi.org/10.1080/03650340.2017.1326104

    Article  CAS  Google Scholar 

  • Karaman S, Gökalp Z,  (2010) Küresel ısınma ve iklim değişikliğinin su kaynakları üzerine etkileri. Tarım Bilimleri Araştırma Dergisi 3(1):59–66

    Google Scholar 

  • Kıratlı H, Seymen M, Kıymacı G (2023) Determination of tolerance to flooding stress in melon cultivars by agronomic and physio-biochemical responses. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-023-01728-z

    Article  Google Scholar 

  • Kumutha D, Ezhilmathi K, Sairam RK, Srivastava GC, Deshmukh PS, Meena RC (2009) Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Biol plant 53(1):75–84

    Article  CAS  Google Scholar 

  • Liang D, Ni Z, Xia H, Xie Y, Lv X, Wang J, Lin L, Deng Q, Luo X (2019) Exogenousmelatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci Hortic 246:34–43. https://doi.org/10.1016/j.scienta.2018.10.058

    Article  CAS  Google Scholar 

  • Lichtenthaler H, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Analtical Chem. https://doi.org/10.1002/0471142913.faf0403s01

    Article  Google Scholar 

  • Lotfia R, Gharavi-Kouchebaghb P, Khoshvaghti H (2015) Biochemical and physiological responses of Brassica napus plants to humic acid under water stress. Russ J Plant Physiol 62(4):480–486

    Article  Google Scholar 

  • Lutts S, Kinet J, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78(3):389–398. https://doi.org/10.1006/anbo.1996.0134

    Article  CAS  Google Scholar 

  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Sci 43:1235–1248

    Article  Google Scholar 

  • Nguyen LTT, Osanai Y, Anderson Ian C, Bange MP, Tissue DT, Singh BK (2018) Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity. Plant Soil 431(1):371–387

    Article  CAS  Google Scholar 

  • Nilufer Y, Alper BA, İbrahim D (2019) İklim Değişikliği ve Havza Yönetimi. Paper presented at the Proceedings on 2nd International Conference on Technology and Science, November

    Google Scholar 

  • Olgun M, Kumlay AM, Adıguzel MC, Caglar A (2008) The effect of waterlogging in wheat (T. aestivum L.). Acta Agric Scand Sect B Soil Plant Sci 58:193–198. https://doi.org/10.1080/09064710701794024

    Article  CAS  Google Scholar 

  • Rao GG, Rao GR (1981) Pigment composition and chlorophylase activity in pigeon pea (Cajanus indians Spreng.) and gingelly (Sesamum indicum L.) under NaCl salinity. Indian J Exp Biol 19:768–770

    CAS  Google Scholar 

  • Salisbury RB, Ross CW (1992) Photosynthesis: environmental and agricultural aspects. p, 4th edn. Paper presented at the Plant Physiology.

    Google Scholar 

  • Sarker KK, Quamruzzaman AKM, Uddin MN, Rahman A, Quddus A, Biswas SK, Gaber A, Hossain A (2022) Evaluation of 10 Eggplant (Solanum melongena L.) Genotypes for development of cultivars suitable for short-term waterlogged conditions. Gesunde Pflanz 75(1):179–192

    Article  Google Scholar 

  • Scandalios JG (1997) Oxidative stress and molecular biology of antioxidant defenses. Cold Spring Laboratory Pres, Cold Spring Harbor, pp 343–406

    Google Scholar 

  • Seymen M (2020) How does the flooding stress occurring in different harvest times affect the morpho-physiological and biochemical characteristics of spinach? Sci Hortic 275:

  • Seymen M (2021) Comparative analysis of the relationship between morphological, physiological, and biochemical properties in spinach (Spinacea oleracea L.) under deficit irrigation conditions. Turk J Agric For 45:55–67. https://doi.org/10.3906/tar-2004-79

    Article  CAS  Google Scholar 

  • Seymen M, Arı BÇ, Kal Ü, Issı N, Atakul Z, Yavuz D (2022) Mitigation effects of melatonin applied to cauliflower seedlings under different flooding durations. Gesunde Pflanz. https://doi.org/10.1007/s10343-022-00797-x

    Article  Google Scholar 

  • Tiryakioğlu M, Karanlık S, Aslanyürek D (2014) Farklı su baskını sürelerinin ekmeklik buğday fidelerinde yaprak alanı, kuru madde ve klorofil içeriğine etkisi. Türk Tarım Doğa Bilimleri Dergisi 1(2):281–288

    Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66. https://doi.org/10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  • Witham FH, Blaydes DF, Devlin RM (1971) Experiments in plant physiology. Van Nostrand Reinhold, New York, pp 55–56

    Google Scholar 

  • Yamazaki J, Ohashi A, Hashimoto Y, Negishi E, Kumagai S, Kubo T, Oikawa T, Maruta E, Kamimura Y (2003) Effects of high light and low temperature during harsh winter on needle photodamage of Abies mariesii growing at the forest limit on Mt.Norikura in Central Japan. Plant Sci 165:257–264

    Article  CAS  Google Scholar 

  • Yan B, Dai Q, Liu X, Huang S, Wang Z (1996) Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179(2):261–268

    Article  CAS  Google Scholar 

  • Yordanova RY, Popova LP (2007) Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol Plantarum 29(6):535–541 DOI: 10.1007/s11738-007-0064-z

    Article  CAS  Google Scholar 

  • Yavaş İ, Ünay A, Şimşek S (2011) Su birikmesinin bitki ve toprak üzerine etkisi. ADÜ Ziraat Fak Derg 8(2):57–61

    Google Scholar 

  • Yordanova RY, Christov KN, Popova LP (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51:93–101. https://doi.org/10.1016/S0098-8472(03)00063-7

    Article  CAS  Google Scholar 

  • Xuekun Z, Qixin F, Jie C (2007). Physiological reaction differences of different waterlogging-tolerant genotype rapeseed (Brassica napus L.) to anoxia. Scientia Agricultura Sinica.

  • Zheng C, Jiang D, Liu F, Dai T, Jing Q, Cao W (2009) Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The current research has not been funded by any department/ agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necibe Kayak.

Ethics declarations

Conflict of interest

N. Kayak declares that she has no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayak, N. The Effect on Morpho-Physiological and Biochemical Characteristics of Cauliflower and Cabbage Harvested at Different Times Under Flooding Stress Conditions. Journal of Crop Health 76, 145–159 (2024). https://doi.org/10.1007/s10343-023-00948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00948-8

Keywords

Navigation