Skip to main content

Advertisement

Log in

Physiological and biochemical changes in plants under waterlogging

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Waterlogging usually results from overuse and/or poor management of irrigation water and is a serious constraint with damaging effects. The rapidly depleting oxygen from submerged root zone is sensed and plant adjusts expressing anaerobic proteins. Plant cells shift their metabolism towards low energy yielding anaerobic fermentation pathways in the absence of oxygen. Structural modifications are also induced as aerenchyma formation and adventitious rootings, etc. Studies at molecular and biochemical levels to facilitate early perception and subsequent responses have also been worked out to produce resistant transgenic plants. This review explores the sequential changes of plant responses at different levels regarding their defense strategies and efforts made to enhance them, tailoring crucial regulators so that they can withstand waterlogging stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

O2−:

Superoxide

RNS:

Reactive nitrogen species

ANPs:

Anaerobically induced polypeptides

ACC :

1-Aminoacyl cyclopropane-1-carboxylic acid

Ci :

Internal carbon dioxide

CER:

CO2 exchange rate

SuSy:

Sucrose synthase

CAT:

Catalase

POX:

Peroxidase

SOD:

Superoxide dismutase

PM-NR:

Plasma membrane–nitrate reductase

cNR:

Cytosolic nitrate reductase

ADH:

Alcohol dehydrogenase

Hb:

Hemoglobin

xet-1:

Xyloglucan endotransglycosylase-1

PGA:

3-Phosphoglycerate

References

  • Agarwal S, Grover A (2006) Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants. Crit Rev Plant Sci 25:1–21

    Article  CAS  Google Scholar 

  • Aggarwal PK, Kalra N, Chander S, Pathak H (2006) InfoCrop: a dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description. Agr Syst 89:1–25

    Article  Google Scholar 

  • Ahsan N, Lee DG, Lee SH, Lee KW, Bahk JD, Lee BH (2007) A proteomic screen and identification of waterlogging-regulated proteins in tomato roots. Plant Soil 295:37–51

    Article  CAS  Google Scholar 

  • Alla MMN, Younis ME, El-Shihaby OA, El-Bastawisy ZM (2002) Kinetin regulation of growth and secondary metabolism in waterlogging and salinity treated Vigna sinensis and Zea mays. Physiol Plant 24:19–27

    Google Scholar 

  • Andrews TJ, Lorimer GH (1987) Rubisco: structure, mechanisms and prospects for improvement. In: Hatch MD, Boardman NK (eds) The biochemistry of plants. Academic Press, New York, pp 131–218

    Google Scholar 

  • Andrews DW, Drew MC, Johnson JR, Cobb BG (1994) The response of maize seedlings of different ages to hypoxic and anoxic stress. Plant Physiol 105:53–60

    PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism oxidatives and signal transduction. Ann Rev Plant Mol Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arikado H, Adachi Y (1955) Anatomical and ecological responses of barley and some forage crops to the flooding treatment. Bull Fac Agr Mie Univ 11:1–29

    Google Scholar 

  • Armstrong W (1978) Root aeration in the wetland condition. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Sci, Ann Arbor (Michigan), pp 269–297

    Google Scholar 

  • Asada K (1999) The water-cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Aschi-Smiti S, Chaïbi W, Brouquisse R, Beerenice-Ricard B, Saglio P (2004) Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum ‘Park’. Ann Bot 91:195–204

    Article  CAS  Google Scholar 

  • Avdhani PN, Greenway H, Lefroy R, Prior L (1978) Alcoholic fermentation and malate metabolism in rice germinating at low oxygen concentrations. Aust J Plant Physiol 5:15–25

    Article  Google Scholar 

  • Badger MR, Sharkey TD, von Caemmerer S (1984) The relationship between steady-state gas exchange of bean leaves and the levels of carbon-reduction-cycle intermediates. Planta 160:305–313

    Article  CAS  Google Scholar 

  • Bahr JT, Jensen RG (1978) Activation of ribulose bisphosphate carboxylase in intact chloroplasts by CO2 and light. Arch Biochem Biophys 185:39–48

    Article  PubMed  CAS  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant/pathogen interactions. Annu Rev Phytopathol 33:299–321

    Article  PubMed  CAS  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Barta AL (1988) Response of field grown alfalfa to root water-logging and shoot removal. I Plant injury and carbohydrate and mineral content of roots. Agron J 88:889–892

    Google Scholar 

  • Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296(5575):2026–2028

    Article  PubMed  CAS  Google Scholar 

  • Beerling D (2007) The emerald planet. How plants changed Earth's history. Oxford University Press, Oxford

    Google Scholar 

  • Beligni MV, Lamattina L (1999a) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999b) Is nitric oxide toxic or protective? Trends Plant Sci 4:299–300

    Article  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation and inhibits hypocotyls elongation, three light inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Botrel A, Kaiser WM (1997) Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201:496–501

    Article  PubMed  CAS  Google Scholar 

  • Botrel A, Magne AC, Kaiser WM (1996) Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia. Plant Physiol Biochem 34:645–652

    CAS  Google Scholar 

  • Bouteau HEM, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3:175–182

    Google Scholar 

  • Bradford KJ (1983) Effects of soil flooding on leaf gas exchange of tomato plants. Plant Physiol 73:475–479

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Stomatal behaviour and water relations of waterlogged tomato plants. Plant Physiol 70:1508–1513

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of I-aminocyclopropane-lcarboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65:322–326

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Yang SF (1981) Physiological responses of plants to waterlogging. HortScience 16:25–30

    CAS  Google Scholar 

  • Braendle R, Crawford RMM (1999) Plants as amphibians. Perspect Plant Ecol Evol Syst 2(1):56–78

    Article  Google Scholar 

  • Bucanamwo M, Purcell LC (1999) Soybean root morphological and anatomical traits associated with acclimation to flooding. Crop Sci 39:143–149

    Google Scholar 

  • Buckner B, Janick-Buckner D, Gray J, Johal GS (1998) Cell-death mechanisms in maize. Trend Plant Sci 3:218–223

    Article  Google Scholar 

  • Campbell R, Drew MC (1983) Electron microscopy of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to oxygen shortage. Planta 157:350–357

    Article  Google Scholar 

  • Castonguay Y, Nadeau P, Simard RR (1993) Effects of flooding on carbohydrate and ABA levels in roots and shoots of alfalfa. Plant Cell Environ 16:695–702

    Article  CAS  Google Scholar 

  • Cecchini G (2003) Function and structure of complex II of the respiratory chain. Ann Rev Biochem 72:77–109

    Article  PubMed  CAS  Google Scholar 

  • Chirkova TV (1978) Some regulatory mechanisms of plant adaptation to temporal anaerobiosis. In: Davies D, Crawford RMM (eds) Plant Life in Anaerobic environment. Ann Arbor Sci Publ, Ann Arbor, pp 137–154

    Google Scholar 

  • Colmer TD (2003) Aerenchyma an inducible barrier to radial oxygen loss facilitate root aeration in upland, and deepwater rice (Oryza sativa L.). Ann Bot 91:301–309

    Article  PubMed  CAS  Google Scholar 

  • Crawford RMM (1967) Alcohol dehydrogenase activity in relation to flooding tolerance in roots. J Exp Bot 18:458–464

    Article  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don't have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Breussegem VF, Vondenabele S, Vranova E, Montagu VM, Inze D (2000) Dual action of active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Capelli N, Folzer H, Bourgeade P, Badot PM (2004) Sensing and signaling during plant flooding. Plant Physiol Biochem 42:273–282

    Article  PubMed  CAS  Google Scholar 

  • Davies DD (1980) Anaerobic metabolism and the production of organic acids. In: Davies DD (ed) The biochemistry of plants, vol. 2. Academic Press, New York, pp 581–611

    Google Scholar 

  • Davies FS, Flore JA (1986a) Short-term flooding effects on gas exchange and quantum yield of rabbiteye blueberry (Vaccinium ashei Reade). Plant Physiol 81:289–292

    Article  PubMed  CAS  Google Scholar 

  • Davies FS, Flore JA (1986b) Gas exchange and flooding stress of highbush and rabbiteye blueberryes. J Am Soc Hort Sci 111:565–571

    Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant defense resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • Di Iorio EE (1981) Preparation of derivatives of ferrous and ferric haemoglobin. Methods Enzymol 76:57–72

    Article  PubMed  Google Scholar 

  • Drew MC (1992) Soil aeration and plant root metabolism. Soil Sci 154:259–268

    Article  Google Scholar 

  • Drew MC, Jackson MB, Giffard SC, Campbell R (1981) Inhibition by silver ions of gas spaces (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta 153:217–224

    Article  CAS  Google Scholar 

  • Drew MC, Cobb BG, Johnson JR, Andrews D, Morgon PW, Jordon W, He CJ (1994) Metabolic acclimation of root tips to oxygen deficiency. Ann Bot 74:281–286

    Article  Google Scholar 

  • Drew MC, He CJ, Morgon PW (2000) Programmed cell death and aerenchyma formation in roots. Trend Plant Sci 5:123–127

    Article  CAS  Google Scholar 

  • Durner JD, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic cAMP and cyclo ADP-ribose. Proc Natl Acad Sci 95:10328–1033

    Article  PubMed  CAS  Google Scholar 

  • Fan TWM, Lane AN, Higashi RA (2003) In vivo and in vitro metabolic analysis of anaerobic rice coleoptiles revealed unexpected pathways. R Jour Plant Physiol 50:787–793

    Article  CAS  Google Scholar 

  • Fan TWN, Higashi RM, Frenkiel TA, Lane AM (1997) Anaerobic nitrate and ammonium metabolism in flood-tolerant rice coleoptiles. J Exp Bot 48:1655–1666

    CAS  Google Scholar 

  • Fath A, Bethke PC, Jones RL (1999) Barley aleurone cell death is not apoptotic: characterization of nuclease activities and DNA degradation. Plant J 20:305–315

    Article  CAS  Google Scholar 

  • Gambrell RP, Patrick WH (1978) Chemical and microbiological properties of anaerobic soils and sediments. In: Hook DD, Crawford RMM (eds) Plant Life in Anaerobic Environments. Ann Arbor Sci Pub, Ann Arbor, pp 375–423

    Google Scholar 

  • Gambrell RP, deLaune RD, Patrick WH Jr (1991) Redox processes in soils following oxygen depletion, plant life under oxygen deprivation. In: Jackson MB, Davies DD, Lambers H (eds) Ecology, physiology and biochemistry. SPB Academic, The Hague, pp 101–117

    Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6(3):247–256

    Article  PubMed  CAS  Google Scholar 

  • Gepstein S, Thimann KV (1981) The role of ethylene in the senescence of oat leaves. Plant Physiol 68:349–354

    Article  PubMed  CAS  Google Scholar 

  • Gerlach WL, Pryor AJ, Dennis ES, Ferl RJ, Sachs MM, Peacock WJ (1982) cDNA cloning and induction of the alcohol dehydrogenase gene (Adh1) of maize. Proc Atl Acad Sci USA 79:2981–2985

    Article  CAS  Google Scholar 

  • Giba Z, Grubisic D, Todorovic S, Sajc L, Stojakovic D, Konjevic R (1998) Effect of nitric oxide releasing compounds on phytochrome-controlled germination of empress tree seeds. Plant Growth Regul 26:175–181

    Article  CAS  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Func Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Gojon A, Passama L, Robin P (1986) Root contribution to nitrate reduction in barley seedlings (Hordeum vulgare L.). Plant Soil 91:339–342

    Article  Google Scholar 

  • Goldschinidt EE (1982) The carbohydrate balance of alternate-bearing citrus trees and the significance of reserves for flowering and fruiting. J Amer Soc Hort Sci 107:206–208

    Google Scholar 

  • Gout E, Boisson AM, Aubert S, Douce R, Bligny R (2001) Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies. Plant Physiol 125:912–925

    Article  PubMed  CAS  Google Scholar 

  • Grineva GM, Bragina TV (1993) Formation of adaptations to flooding in corn. Soviet Plant Physiol 40:583–587

    Google Scholar 

  • Groover A, Jones AM (1999) Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol 119:375–384

    Article  PubMed  CAS  Google Scholar 

  • Gunaverdena A, Pearce DM, Jackson MB, Hawes CR, Evans DE (2001) Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays). Planta 212:205–214

    Article  Google Scholar 

  • Harberd NP, Edwards KJR (1983) Further studies on the alcohol dehydrogenases in barley: evidence for a third alcohol dehydrogenase locus and data on the effect of an alcohol dehydrogenase-1 null mutation in homozygous and in heterozygous condition. Genet Res 41:109–116

    Article  Google Scholar 

  • Hagler L, Coppes RI Jr, Herman RH (1979) Metmyoglobin reductase.Identification and purification of a reduced nicotinamide adenine dinucleotide-dependent enzyme from bovine heart which reduces metmyoglobin. J Biol Chem 254:6505–6514

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • He CJ, Drew MC, Morgan PW (1994) Induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiol 105:861–865

    PubMed  CAS  Google Scholar 

  • He CJ, Morgan PW, Drew MC (1996) Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol 112:463–472

    PubMed  CAS  Google Scholar 

  • Herath HME, Eaton GW (1968) Some effects of water table, pH, and nitrogen fertilization upon growth and nutrient-element content of high bush blueberry plants. Proc Am Soc Hort Sci 92:274–283

    CAS  Google Scholar 

  • Hill RD (1998) What are haemoglobins doing in plants? Can J Bot 76:707–712

    Article  CAS  Google Scholar 

  • Hoffmann-Benning S, Kende H (1992) Cuticle biosynthesis in rapidly growing internodes of deepwater rice. Plant Physiol 99:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Hoffman NE, Bent AF, Hanson AD (1986) Induction of lactate dehydrogenase by oxygen deficit in barley root tissue. Plant Physiol 82:658–663

    Article  PubMed  CAS  Google Scholar 

  • Hsu YM, Tseng MJ, Lin CH (1999) The fluctuation of carbohydrates and nitrogen compounds in flooded wax-apple trees. Bot Bull Acad Sin 40:193–198

    CAS  Google Scholar 

  • Huang S, Greenway H, Colmer TD (2003) Responses of coleoptiles of intact rice seedlings to anoxia: K+net uptake from the external solution and translocation from the caryopses. Ann Bot 91:271–278

    Article  PubMed  CAS  Google Scholar 

  • Hunt PW, Klok EJ, Trevaskis B, Watts RA, Ellis MH, Peacock WJ, Dennis ES (2002) Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 99(26):17197–17202

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Gardestrom P (2003) Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Biochim Biophys Acta 1606:117–125

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Hill RD (2009) Plant mitochondrial function during anaerobiosis. Ann Bot 103:259–268

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Bykova NV, Ens W, Hill RD (2004a) Dihydrolipoamide dehydrogenase from porcine heart catalyses NADH dependent oxygenation of nitric oxide. FEBS Lett 568:146–150

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Seregélyes C, Manac’h N, Hill RD (2004b) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley haemoglobin. Planta 219:95–102

    Article  PubMed  CAS  Google Scholar 

  • IPPC (2001) The scientific basis contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change. Cambridge University Press, Cambridge, pp 1–94

    Google Scholar 

  • Ishizawa K, Esashi Y (1984) Osmoregulation in rice coleoptile elongation as promoted by cooperation between IAA and ethylene. Plant Cell Physiol 25:495–504

    CAS  Google Scholar 

  • Jackson MB (1985) Ethylene and the responses of plants to soil waterlogging and submergence. Ann Rev Plant Physiol 36:145–174

    CAS  Google Scholar 

  • Jackson MB (1991) Regulation of water relationships in flooded plants by ABA from leaves, roots and xylem sap. In: Davies WJ, Jenes HG (eds) Abscisic acid: physiology and biochemistry. BIOS Sci Publ, Oxford, pp 217–226

    Google Scholar 

  • Jackson MB (2008) Ethylene-promoted elongation: an adaptation to submergence stress. Ann Bot 101:229–248

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Campbell DJ (1976) Movement of ethylene from roots to shoots a factor in responses of tomato plants to waterlogged soil conditions. New Phytol 76:21–29

    Article  CAS  Google Scholar 

  • Jackson MB, Colmer TD (2005) Response and adaptation by plants to flooding stress. Ann Bot 96:501–505

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Drew MC (1984) Effects of flooding on growth and metabolism of herbaceous plants. In: Kozlowski T (ed) Flooding and plant growth. Academic Press, New York, pp 47–128

    Google Scholar 

  • Jackson MB, Hall KC (1987) Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits. Plant Cell Environ 10:121–130

    CAS  Google Scholar 

  • Jackson MB, Kowalewska AKB (1983) Positive and negative messages from roots induce foliar desiccation and stomatal closure in flooded pea plants. J Exp Bot 34:493–506

    Article  CAS  Google Scholar 

  • Jackson MB, Pearse DME (1991) Hormones and morphological adaptation to aeration stress in rice. In: Jackson MB, Lambers H (eds) Plant life under oxygen deprivation. SPB Acad Publ, Hague, pp 47–67

    Google Scholar 

  • Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot 91:227–241

    Article  PubMed  CAS  Google Scholar 

  • Jain JL, Jain S, Jain N (2006) Fundamental of biochemistry-plant hormones, 6th edn. S Chand and Company Ltd, New Delhi, pp 945–955

    Google Scholar 

  • Johnson J, Cobb BG, Drew MC (1989) Hypoxic induction of anoxia tolerance in root tips of Zea mays. Plant Physiol 91:837–841

    Article  PubMed  CAS  Google Scholar 

  • Jormakka M, Byrne B, Iwata S (2003) Protonmotive force generation by a redox loop mechanism. Febs Lett 545:25–30

    Article  PubMed  CAS  Google Scholar 

  • Justin SHFW, Armstrong W (1991) Evidence for the involvement of ethylene in aerenchyma formation in adventitious roots of rice (Oryza sativa). New Phytol 118P:49–62

    Article  Google Scholar 

  • Kamaluddin M, Zwiazek JJ (2002) Ethylene enhances water transport in hypoxic Aspen. Plant Physiol 128:962–969

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Samarajeewa PK, Barrero RA, Nishiguchi M, Uchimiya H (1998) Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation in rice roots. Planta 204:277–287

    Article  CAS  Google Scholar 

  • Kelley PM (1989) Maize pyruvate decarboxylase mRNA is induced anaerobically. Plant Mol Biol 13:213–222

    Article  PubMed  CAS  Google Scholar 

  • Kelley PM, Freeling M (1984a) Anaerobic expression of maize glucose phosphate isomerase I. J Bio Chem 259P:673–677

    Google Scholar 

  • Kelley PM, Freeling M (1984b) Anaerobic expression of maize fructose- 1, 6-diposphate aldolase. J Bio Chem 259:14180–14183

    CAS  Google Scholar 

  • Kennedy RA, Rumpho ME (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. The Plant Cell 10:51–62

    Article  PubMed  CAS  Google Scholar 

  • Koprya M, Gwozdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Labanauskas CK, Stolzy LH, Handy MF (1972) Concentrations and total amount of nutrients in citrus seedlings (Citrus sinensis ‘Osbeck9) and in soil as influenced by different soil oxygen treatment. Proc Soil Sci Soc Am 36:454–457

    Article  CAS  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Ann Rev Plant Biol 54:109–136

    Article  CAS  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  PubMed  CAS  Google Scholar 

  • Liao CT, Lin CH (1994) Effect of flooding stress on photosynthetic activities of Momordica charantia. Plant Physiol Biochem 32:1–5

    Google Scholar 

  • Liao CT, Lin CH (1995) Effect of flood stress on morphology and anaerobic metabolism of Momordica charantia. Environ Exp Bot 35:105–113

    Article  Google Scholar 

  • Liao CT, Lin CH (2001) Physiological adaptation of crop plants to flooding stress. Proc Natl Sci Counc ROC (B) 25:148–157

    CAS  Google Scholar 

  • Lorbiecke R, Sauter M (1999) Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol 119:21–29

    Article  PubMed  CAS  Google Scholar 

  • Lorimer GH, Badger MR, Andrews TJ (1976) The activation of ribulose-1, 5-bis-phosphate carboxylase by carbon dioxide and magnesium ion. Equilibria, kinetics, a suggested mechanism and physiological implications. Biochemistry 15:529–536

    Article  PubMed  CAS  Google Scholar 

  • Loreti E, Yamaguchi J, Alpi A, Perata P (2003) Sugar modulations of alpha-amylase genes under anoxia. Ann Bot 91:143–148

    Article  PubMed  CAS  Google Scholar 

  • Loreti E, Poggi A, Novi G, Alpi A, Perata P (2005) A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol 137(3):1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103:181–196

    Article  PubMed  CAS  Google Scholar 

  • Maltby E (1991) Wetlands–their status and role in the biosphere, plant life under oxygen deprivation. In: Jackson MB, Davies DD, Lambers H (eds) Ecology, physiology and biochemistry. SPB Academic, The Hague, pp 3–21

    Google Scholar 

  • Mapelli S, Locatelli F, Bertani A (1995) Effect of anaerobic environment on germination and growth of rice and wheat: endogenous levels of ABA and IAA. Bulg J Plant Physiol 21:33–41

    CAS  Google Scholar 

  • Martinez P, Martin W, Cerff R (1989) Structure, evolution and anaerobic regulation of a nuclear gene encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Biol 208:551–565

    Article  PubMed  CAS  Google Scholar 

  • Marubashi W, Yamada T, Niwa M (1999) Apoptosis detected in hybrids between Nicotiana glutinosa and N. repanda expressing lethality. Planta 210:168–171

    Article  PubMed  CAS  Google Scholar 

  • Mattana M, Coraggio I, Bertani A, Reggiani R (1994) Expression of the enzymes of nitrate reduction during the anaerobic germination of rice. Plant Physiol 106:1605–1608

    PubMed  CAS  Google Scholar 

  • McManmon M, Crawford RMM (1971) A metabolic theory of flooding tolerance: the significance of enzyme distribution and behaviour. New Phytol 70:299–306

    Article  CAS  Google Scholar 

  • McNamara ST, Mitchell CA (1989) Differential flood stress resistance of two tomato genotypes. J Am Soc Hort Sci 105:751–755

    Google Scholar 

  • McNamara ST, Mitchell CA (1991) Roles of auxin and ethylene in adventitious root formation by a flood-resistant tomato genotype. Hort Sci 26:57–58

    Google Scholar 

  • Mehta RA, Fawcell TW, Porath D, Mattoo AK (1992) Oxidative stress causes rapid membrane translocation and in vivo degradation of ribulose 1, 5-biphosphate carboxylase/oxygenase. J Biol Chem 267:2810–2816

    PubMed  CAS  Google Scholar 

  • Mergemann H, Sauter M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124:609–614

    Article  PubMed  CAS  Google Scholar 

  • Miernyk JA (1990) Glycolysis, the oxidative pentose phosphate pathway and anaerobic respiration. In: Dennis DT, Tunpin DH (eds) Plant Physiol Biochem Mol Biol Longman, White plains, NY, pp 77–100

    Google Scholar 

  • Miziorko HM, Lorimer GH (1983) Ribulose 1, 5-bisphosphate carboxylase-oxygenase. Ann Rev Biochem 52:507–535

    Article  PubMed  CAS  Google Scholar 

  • Moore R, Clark WD, Stern KR, Vodopich D (1995) Botany. Wm C Brown Publishers, London, pp 431–432

    Google Scholar 

  • Moran JF, Sun Z, Sarath G, Arredondo-Peter R, James EK, Becana M, Klucas RV (2002) Molecular cloning, functional characterization, and subcellular localization of soybean nodule dihydrolipomide reductase. Plant Physiol 128:300–313

    Article  PubMed  CAS  Google Scholar 

  • Mujer CV, Rumpho ME, Lin JJ, Kennedy RA (1993) Constitutive and inducible aerobic and anaerobic stress proteins in the Echinochloa complex and rice. Plant Physiol 101:217–226

    PubMed  CAS  Google Scholar 

  • Musagrave A, Jackson MB, Long E (1972) Gallitriche stem elongation is controlled by ethylene and gibberellins. Nature New Biol 238:93–96

    Article  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitrite oxide novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Nilsen E, Orcutt DM (1996) The physiology of plants under stress – Abiotic factors. Wiley, New York, 689

    Google Scholar 

  • Nie X, Hill RD (1997) Mitochondrial respiration and haemoglobin gene expression in barley aleurone tissue. Plant Physiol 114:835–840

    PubMed  CAS  Google Scholar 

  • Olien WC (1989) Seasonal soil waterlogging influences water relations and leaf nutrient content of bearing apple trees. J Amer Soc Hort Sci 114:537–542

    Google Scholar 

  • Ooume K, Inoue Y, Soga K, Wakabayashi K, Fujii S, Yamamoto R, Hoson T (2009) Cellular basis of growth suppression by submergence in azuki bean epicotyls. Ann Bot 103:325–332

    Article  PubMed  CAS  Google Scholar 

  • Pang J, Cuin T, Shabala L, Zhou M, Mendham N, Shabala S (2007) Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. Plant Physiol 145:266–276

    Article  PubMed  CAS  Google Scholar 

  • Peng HP, Chan CS, Shih MC, Yang SF (2001) Signaling events in the hypoxic induction of Adh in Arabidopsis. Plant Physiol 126:742–749

    Article  PubMed  CAS  Google Scholar 

  • Perata P, Pozueta-romero J, Akazawa T, Yamaguchi J (1992) Effect of anoxia on starch breakdown in rice and wheat seeds. Planta 188:611–618

    Article  CAS  Google Scholar 

  • Peschke VM, Sachs MM (1993) Multiple pyruvate decarboxylase genes in maize are induced by hypoxia. Mol Gen Genet 240:206–212

    Article  PubMed  CAS  Google Scholar 

  • Peschke VM, Sachs MM (1994) Characterization and expression of anaerobically induced maize transcripts. Plant Physiol 104:387–394

    Article  PubMed  CAS  Google Scholar 

  • Pegoraro R, Mapelli S, Torti G, Bertani A (1988) Indole-3-acetic-acid and rice coleoptile elongation under anoxia. J Plant Growth Regul 7:85–94

    Article  CAS  Google Scholar 

  • Phung HT, Knipling EB (1976) Photosynthesis, and transpiration and leaf conductance of Populus deltoids in relation to flooding and drought. Photosynthetica 9:52–61

    Google Scholar 

  • Ponnamperuma FN (1984) Effect of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic, San Francisco, pp 9–45

    Google Scholar 

  • Raskin I, Kende H (1984) Regulation of growth in stem sections of deepwater rice. Planta 160:66–72

    Article  CAS  Google Scholar 

  • Ratcliffe RG (1995) Metabolic aspects of the anoxic response in plant tissue. In: Smirnoff (ed) Environment and plant metabolism: flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 111–127

    Google Scholar 

  • Recard B, Van Toi T, Chourey P, Saglio P (1998) Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using double mutant. Plant Physiol 116:1323–1331

    Article  Google Scholar 

  • Reggiani R, Mattana M, Aurisano N, Bertani A (1993) Utilization of stored nitrate during the anaerobic germination of rice seeds. Plant Cell Physiol 34:379–383

    CAS  Google Scholar 

  • Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O (1984) Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Natl Acad Sci USA 81:3379–3383

    Article  PubMed  CAS  Google Scholar 

  • Rowland LJ, Strommer JN (1986) Anaerobic treatment of maize roots affects transcription of Adh 1 and transcript stability. Mol Cell Biol 6:3368–3372

    PubMed  CAS  Google Scholar 

  • Russel DA, Sachs MM (1989) Differential expression and sequences analysis of maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant Cell 1:793–803

    Article  Google Scholar 

  • Saab IN, Sachs MM (1995) Complete cDNA and genomic sequence encoding a flooding-responsive gene from maize (Zea mays L.) homologous to xyloglucan endo-transglycosylase. Plant Physiol 108:439–440

    Article  PubMed  CAS  Google Scholar 

  • Saab IN, Sachs MM (1996) A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiol 112:385–391

    Article  PubMed  CAS  Google Scholar 

  • Sachs MM, Ho T-HD (1986) Alteration of gene expression during environmental stresses in plants. Ann Rev Plant Physiol 37:363–376

    CAS  Google Scholar 

  • Sachs MM, Freeling M, Okimoto R (1980) The anaerobic proteins of maize. Cell 20:761–767

    Article  PubMed  CAS  Google Scholar 

  • Saglio PH (1985) Effect of path or sink anoxia on sugar translocation in roots of maize seedlings. Plant Physiol 77:285–290

    Article  PubMed  CAS  Google Scholar 

  • Saglio PH, Raymond P, Pradet A (1980) Metabolic activity and energy charge of excised maize root tips under anoxia. Plant Physiol 66:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Saglio PH, Drew MC, Pradet A (1988) Metabolic acclimation to anoxia induced by low (2–4 kPa) partial pressure oxygen pretreatment (hypoxia) in root tips of Zea mays. Plant Physiol 86:61–66

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC (2008) Physiology and biochemistry of waterlogging in plants. Biol Plant 52(3):401–412

    Article  CAS  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K (2009) Waterlogging tolerance: nonsymbiotic haemoglobin-nitric oxide homeostasis and antioxidants. Curr Sci 96(5):674–682

    CAS  Google Scholar 

  • Saint-Ges V, Roby C, Bligny R, Pradet A, Douce R (1991) Kinetic studies of the variations of cytoplasmic pH, nucleoside triphosphates (31P-NMR) and lactate during normoxic and anoxic transitions in maize root tips. E J Biochem 200:477–482

    Article  CAS  Google Scholar 

  • Sage RF (1990) A model describing the regulation of ribulose-1, 5-bis-phosphate carboxylase, electron transport and triose phosphate use in response to light intensity and CO2 in C3 plants. Plant Physiol 94:1728–1734

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1988) The in vivo response of the Ribulose 1, 5-bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO2 in Phaseolus vulgaris L. Planta 174:407–416

    Article  CAS  Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1990) Regulation of ribulose-1, 5 bis-phosphate carboxylase activity in responses light intensity and CO2 in the C3 annuals Chenopodium album L. and Phaseolus vulgaris. Plant Physiol 94:135–142

    Google Scholar 

  • Samarajeewa PK, Barrero RA, Umeda-Hara C, Kawai M, Uchimiya H (1999) Cortical cell death, cell proliferation, macromolecular movements and rTip1 expression pattern in roots of rice (Oryza sativa L.) under NaCl stress. Planta 207:354–361

    Article  CAS  Google Scholar 

  • Scholefield PB, Sedgley M, Alexander DMCE (1985) Carbohydrate cycling in relation to shoot growth, floral initiation and development and yield in the avocado. Sci Hortic 25:99–110

    Article  Google Scholar 

  • Sena Gomes AR, Kozlowski TT (1980) Growth responses and adaptation of Fraxinus pennsylvanica seedlings to flooding. Plant Physiol 66:267–271

    Article  Google Scholar 

  • Slowick K, Labanauskas CK, Stolzy LH, Zentmyer GA (1979) Influences of rootstocks, soil oxygen, and soil moisture on the uptake and translocation in young avocado plants. J Amer Soc Hort Sci 104:172–175

    Google Scholar 

  • Smith MW, Ager PL (1988) Effect of soil flooding of leaf has exchange of seedling pecan trees. Hort Sci 23:370–372

    Google Scholar 

  • Smith AM, Rees T (1979) Pathways of carbohydrate fermentation in the roots of marsh plants. Planta 146:327–334

    Article  CAS  Google Scholar 

  • Smith MW, McNew RW, Ager PL, Cotton BC (1986) Seasonal changes in the carbohydrate concentration in pecan shoots and their relationship of flowering. J Amer Soc Hort Sci 111:558–561

    CAS  Google Scholar 

  • Sowa A, Duff SMG, Guy PA, Hill RD (1998) Altering hemoglobin levels changes energy status in maize cells under hypoxia. Proc Nat Acad Sci USA 95:10317–10321

    Article  PubMed  CAS  Google Scholar 

  • Steffen D, Doring O, Busch MA, Bottger M, Luthje S (2001) Interactions between electron transport at the plasma membrane and nitrate uptake by maize (Zea mays L.) roots. Protoplasma 217:70–76

    Article  PubMed  CAS  Google Scholar 

  • Stohr C, Mack G (2001) Diurnal changes in nitrogen assimilation of tobacco roots. J Exp Bot 52:1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Stohr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  PubMed  CAS  Google Scholar 

  • Stunzi JT, Kende H (1989) Gas composition in the internal air spaces of deep water rice in relation to growth induced by submergence. Plant Cell Physiol 30:49–56

    Google Scholar 

  • Subbaiah CC, Sachs MM (2003) Molecular and cellular adaptations of maize to flooding stress. Ann Bot 91:119–127

    Article  PubMed  CAS  Google Scholar 

  • Su PH, Lin CH (1998) Root sugar level in flooded luffa and bitter melon is not referential to flooding tolerance. Bot Bull Acad In 39:175–179

    CAS  Google Scholar 

  • Swaminathan MS (1993) From nature to crop production. In: Buxton DR et al (eds) International Crop Science I. Crop Science Society of America, Madison, pp 385–394

    Google Scholar 

  • Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H, Tanaka A (1996) Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 110:1223–1230

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE, Legge RL, Baker RF (1987) The role of free radicals in senescence and wounding. New Phytol 105:317–344

    Article  CAS  Google Scholar 

  • Topa MA, Cheesemann JM (1992) Effects of root hypoxia and a low P supply on relative growth, carbon dioxide exchange rates and carbon partitioning in Pinus serotina seedlings. Physiol Plant 86:136–144

    Article  CAS  Google Scholar 

  • Topunov AF, Melik-Sarkisian SS, Lysenko LA, Kretovich VL (1980) Properties of methemoglobin reductase from lupine nodules. Biochemistry (Moscow) 45:2053–2058

    CAS  Google Scholar 

  • Trevaskis B, Watts RA, Andersson C, Llewellyn D, Hargrove MS, Olson JS, Dennis ES, Peacock WJ (1997) Two haemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc Nat Acad Sci USA 94:12230–12234

    Article  PubMed  CAS  Google Scholar 

  • Trought MCT, Drew MC (1982) Effects of waterlogging on young wheat plants (Triticum aestivum L.) and on soil solutes at different temperatures. Plant Soil 69:311–326

    Article  CAS  Google Scholar 

  • Tripepi RR, Mitchell CA (1984) Stem hypoxia and root respiration of flooded maple and birch seedlings. Physiol Plant 60:567–571

    Article  Google Scholar 

  • Van Steveninck RFM, Van Steveninck ME (1983) Abscesic acid and membrane transport. In: Davies WJ, Jones HG (eds) Abscesic Acid: Physiology and Biochemistry. BIOS Scientific, Oxford, pp 53–61

    Google Scholar 

  • Vanlerberghe CC, Feil R, Turpin DH (1990) Anaerobic metabolism in the N-limited green alga Selenastrum minutumi.I. Regulation of carbon metabolism and succinate as a fermentation product. Plant Physiol 94:1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Vartapetian BB, Andreeva IN, Generozova IP, Polyakova LI, Maslova IP, Dolgikh YI, Stepanova AY (2003) Fuctional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann Bot 91:155–172

    Article  PubMed  CAS  Google Scholar 

  • Vartapetian BB (2005) Plant anaerobic stress as a novel trend in ecological physiology, biochemistry, and molecular biology 1.Establishment of a new scientific discipline. Rus J Plant Physiol 52:826–844

    Article  CAS  Google Scholar 

  • Vartapetian BB (2006) Plant anaerobic stress as a novel trend in: ecological physiology, biochemistry, and molecular biology 2.Further development of the problem. Russ J Plant Physiol 53(6):711–738

    Article  CAS  Google Scholar 

  • Visser EJW, Voesenek LACJ, Vertapetian BB, Jackson MB (2003) Flooding and plant growth. Ann Bot 91:107–109

    Article  CAS  Google Scholar 

  • von Caemmerer S, Edmondson DL (1986) The relationship between steady-state gas exchange, in vivo RuBP2 carboxylase activity and some carbon reduction cycle intermediates in Raphanus sativus. Aus J Plant Physiol 13:669–688

    Article  Google Scholar 

  • Voesenek LACJ, Banga M, Their RH, Mudde CM, Harren FM, Barendse GWM, Blom CWPM (1993) Submergence-induced ethylene synthesis, entrapment, and growth in two plant species with contrasting flooding resistances. Plant Physiol 103:783–791

    PubMed  CAS  Google Scholar 

  • Voesenek LACJ, Benschop JJ, Bou J, Cox MCH, Groeneveld HW, Millenaar FF, Vreeburg RAM, Peeters AJM (2003) Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann Bot 91:205–211

    Article  PubMed  CAS  Google Scholar 

  • Vriezen WH, Zhou Z, Van der Straeten D (2003) Regulation of submergence-induced enhanced shoot elongation in Oryza sativa L. Ann Bot 91:263–270

    Article  PubMed  CAS  Google Scholar 

  • Vu CV, Yelenosky G (1991) Photosynthetic responses of citrus trees to soil flooding. Physiol Plan 81:7–14

    Article  CAS  Google Scholar 

  • Watkin ELJ, Campbell CJ, Greenway H (1998) Root development and aerenchyma formation in two wheat cultivars and one Triticale cultivar grown in stagnant agar and aerated nutrient solution. Ann Bot 81:349–354

    Article  Google Scholar 

  • Wample RL, Davis RW (1983) Effect of flooding on starch accumulation in chloroplasts of sunflower (Helianthus annuus L.). Plant Physiol 73:195–198

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Li J, Bostock RM, Gilchrist DG (1996a) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Oppedijk BJ, Lu X, Dujin BV, Schilperoort RA (1996b) Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Mol Biol 32:1125–1134

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1510

    Article  PubMed  CAS  Google Scholar 

  • Webb T, Armstrong W (1983) The effects of anoxia and carbohydrates on the growth and viability of rice, pea and pumpkin roots. J Exp Bot 34:579–603

    Article  CAS  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitrite oxide: Insights into regulatory, cytotoxic and cytoprotective mechanisms of nitric oxide. Free Radical Bio Med 25:434–456

    Article  CAS  Google Scholar 

  • Zacarias L, Reid MS (1990) Role of growth regulators in the senescence of Arabidopsis thaliana leaves. Physiol Plant 80:549–554

    Article  CAS  Google Scholar 

  • Zeng Y, Avigne WT, Koch KE (1999) Rapid repression of maize invertase by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential and seedling survival. Plant Physiol 121:599–608

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Formentin E, Scattolin M, Carimi F, Lo Schiavo F, Terzi M (2002) NO affects plant mitochondrial functionality in-vivo. Febs Lett 515:75–78

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsul Hayat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irfan, M., Hayat, S., Hayat, Q. et al. Physiological and biochemical changes in plants under waterlogging. Protoplasma 241, 3–17 (2010). https://doi.org/10.1007/s00709-009-0098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-009-0098-8

Keywords

Navigation