Skip to main content
Log in

Nanoparticles for pest control: current status and future perspectives

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

In the current paper, we reviewed the use of nanoparticles (NPs) in crop protection, emphasizing the control of pests in the agricultural and urban environment. At the same time, we provide the framework on which the technology of NPs is based and the various categories of NPs that are currently used for pest control. Apart from the use of NPs as carriers of a broad category of active ingredients, including insecticides and pheromones, some NPs can be used successfully as insecticides alone. Moreover, several types of NPs are produced by natural resource-based substances, which make them promising “green” alternatives to the use of traditional pest control agents. Finally, the potentials in the use of NPs are briefly illustrated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abduz Zahir A, Abdul Rahuman A (2012) Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet Parasitol 187:511–520

    Article  CAS  PubMed  Google Scholar 

  • Abduz Zahir A, Bagavan A, Kamaraj C, Elango G, Abdul Rahuman A (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopestic 5(Supplementary):95–102

    CAS  Google Scholar 

  • Abreu FOMS, Oliveira EF, Paula HCB, de Paula RCM (2012) Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym 89:1277–1282

    Article  CAS  PubMed  Google Scholar 

  • Adak T, Kumar J, Shakil NA, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B 47:217–225

    Article  CAS  PubMed  Google Scholar 

  • Alemán J, Chadwick AV, He J, Hess M, Horie K, Jones RG, Kratochvíl P, Meisel I, Mita I, Moad G, Penczek S, Stepto RFT (2007) Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic–organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem 79:1801–1809

    Article  CAS  Google Scholar 

  • Amerasan D, Nataraj T, Murugan K, Panneerselvam C, Madhiyazhagan P, Nicoletti M, Benelli G (2016) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89(1):249–256

    Article  Google Scholar 

  • Anjali CH, Sudheer Khan S, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Appell M, Jackson MA (2013) Applications of nanoporous materials in agriculture. In: Park B, Appell M (eds) Advances in applied nanotechnology for agriculture, vol 1143. American Chemical Society, Washington DC, pp 167–176

    Chapter  Google Scholar 

  • Arjunan NK, Murugan K, Rajeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoonotic Dis 12:262–267

    Article  PubMed  Google Scholar 

  • Athanassiou CG, Vayias CJ, Dimizas CB, Kavallieratos NG, Papagregoriou AS, Buchelos C (2005) Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum Du Val (Coleoptera: Tenebrionidae) on stored wheat: influence of dose rate, temperature and exposure interval. J Stored Prod Res 41:47–55

    Article  CAS  Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Evergetis E, Katsoula AM, Haroutounian SA (2013) Insecticidal efficacy of the enhanced silica gel with Juniperus oxycedrus L. ssp. oxycedrus essential oil against Sitophilus oryzae (L.) and Tribolium confusum Jacquelin du Val. J Econ Entomol 106:1902–1910

    Article  CAS  PubMed  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–664

    Article  CAS  PubMed  Google Scholar 

  • Balalakshmi C, Gopinath K, Govindarajan M, Lokesh R, Arumugam A, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: impact on plant cells and the aquatic crustacean Artemia nauplii. J Photochem Photobiol B Biol 173:598–605

    Article  CAS  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Barron T (2007) Iowa State scientists demonstrate first use of nanotechnology to enter plant cells. http://www.public.iastate.edu/~nscentral/news/2007/may/nanotech.shtml

  • Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805

    Article  PubMed  Google Scholar 

  • Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115(1):23–34

    Article  PubMed  Google Scholar 

  • Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microb Technol 95:58–68

    Article  CAS  PubMed  Google Scholar 

  • Benelli G, Lukehart CM (2017) Special issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28(1):1–2

    Article  CAS  Google Scholar 

  • Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017) Commentary: making green pesticides greener? the potential of plant products for nanosynthesis and pest control. J Clust Sci 28(1):3–10

  • Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohua F, Ziyong Z (2011) Carboxymethyl chitosan grafted ricinoleic acid group for nanopesticide carriers. Adv Mater Res 236–238:1783–1788

    Google Scholar 

  • Buteler M, Sofie SW, Weaver DK, Driscoll D, Muretta J, Stadler T (2015) Development of nanoalumina dust as insecticide against Sitophilus oryzae and Rhyzopertha dominica. Int J Pest Manag 61:80–89

    Article  CAS  Google Scholar 

  • Campbell JL, Arora J, Cowell SF, Garg A, Eu P, Bhargava SK, Bansal V (2011) Quasi-cubic magnetite/silica core–shell nanoparticles as enhanced MRI contrast agents for cancer imaging. PLoS ONE 6(7):e21857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choy JH, Choi SJ, Oh JM, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36:122–132

    Article  CAS  Google Scholar 

  • Cifuentes Z, Custardoy L, de la Fuente J, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8:26

    Article  CAS  Google Scholar 

  • Cotae V, Creanga I (2005) LHC II system sensitivity to magnetic fluids. J Magn Magn Mater 289:459–462

    Article  CAS  Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105

    Article  Google Scholar 

  • Debnath N, Mitra S, Das S, Goswami A (2012) Synthesis of surface functionalized silica nanoparticles and their use as entomotoxicnanocides. Powder Technol 221:252–256

    Article  CAS  Google Scholar 

  • Dimetry NZ, Hussein HM (2016) Role of nanotechnology in agriculture with special reference to pest control. Int J PharmTech Res 9:121–144

    Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Kumar PM, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529

    Article  PubMed  Google Scholar 

  • Du L, Miao X, Jiang Y, Jia H, Tian Q, Shen J, Liu Y (2013) An effective strategy for the synthesis of biocompatible gold nanoparticles using danshensu antioxidant: prevention of cytotoxicity via attenuation of free radical formation. Nanotoxicology 7:94–300

    Google Scholar 

  • Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (Safeda) leaf. Dig J Nanomater Bios 4:537–543

    Google Scholar 

  • Durga Devi G, Murugan K, Panneer Selvam C (2014) Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Biopestic 7(Supplementary):54–66

    Google Scholar 

  • Elango G, Roopan SM, Dhamodaran KI, Elumalai K, Al-Dhabi NA, Arasu MV (2016) Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities. J Photochem Photobiol B Biol 162:162–167

    Article  CAS  Google Scholar 

  • Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloid Surf A 372:66–72

    Article  CAS  Google Scholar 

  • Fu YQ, Li LH, Wang PW, Qu J, Fu YP, Wang H, Sun JR, Lu CL (2012) Delivering DNA into plant cell by gene carriers of ZnS nanoparticles. Chem Res Chin Univ 28:672–676

    CAS  Google Scholar 

  • Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–273

    Article  CAS  PubMed  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar PM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Govindarajan M, Benelli G (2016) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6:59021–59029

    Article  CAS  Google Scholar 

  • Green JM, Beestman GB (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Prot 26:320–327

    Article  CAS  Google Scholar 

  • Hellmann C, Greiner A, Wendorff JH (2011) Design of pheromone releasing nanofibers for plant protection. Polym Adv Technol 22:407–413

    Article  CAS  Google Scholar 

  • Jang HR, Oh H-J, Kim J-H, Jung KY (2013) Synthesis of mesoporous spherical silica via spray pyrolysis: pore size control and evaluation of performance in paclitaxel prepurification. Microporous Mesoporous Mater 165:219–227

    Article  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194

    Article  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G, Velayutham K, Rao KV, Karthik L, Raveendran S (2012) Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res 111:921–933

    Article  PubMed  Google Scholar 

  • Jerobin J, Sureshkumar RS, Anjali CH, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90:1750–1756

    Article  CAS  PubMed  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. www.nanoforum.org

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867

    Article  CAS  Google Scholar 

  • Kamaraj C, Rajakumar G, Rahuman AA, Velayutham K, Bagavan A, Zahir AA, Elango G (2012) Feeding deterrent activity of synthesized silver nanoparticles using Manilkara zapota leaf extract against the house fly, Musca domestica (Diptera: Muscidae). Parasitol Res 111:2439–2448

    Article  PubMed  Google Scholar 

  • Kaushik P, Shakil NA, Kumar J, Singh MK, Yadav SK (2013) Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J Environ Sci Health B 48:677–685

    Article  CAS  PubMed  Google Scholar 

  • Kavallieratos NG, Athanassiou CG, Peteinatos GG, Boukouvala MC, Benelli G (2017) Insecticidal effect and impact on fitness of three diatomaceous earths on different maize hybrids for the eco-friendly control of the invasive stored-product pest Prostephanus truncatus (Horn). Environ Sci Pollut Res. doi:10.1007/s11356-017-9565-5

    Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Ki HY, Kim JH, Kwon SC, Jeong SH (2007) A study on multifunctional wool textiles treated with nano-sized silver. J Mater Sci 42:8020–8024

    Article  CAS  Google Scholar 

  • Kim SW, Jung JH, Lamasal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles A (2009) Global trends in pesticide formulation technology: the development of safer formulations in China. Outlooks Pest Manag 20:165–170

    Article  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Korunic Z (1998) Diatomaceous earths, a group of natural insecticides. J Stored Prod Res 34:89–97

    Article  Google Scholar 

  • Kumar DR, Kumar PS, Gandhi MR, Al-Dhabi NA, Paulraj MG, Ignacimuthu S (2016) Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int J Biol Macromol 86:89–95

    Article  CAS  Google Scholar 

  • Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, Toprak MS, Buerki-Thurnherr T, Laurent S, Vahter M, Krug H, Muhammed M, Scheynius A, Fadeel B (2011) Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol 253:81–93

    Article  CAS  PubMed  Google Scholar 

  • Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L. essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech 7(1):2

    Article  Google Scholar 

  • Lawrence MJ, Warisnoicharoen W (2006) Recent advances in microemulsions as drug delivery vehicles. In: Torchilin VP (ed) Nanoparticles as drug carriers. Imperial College Press, London, pp 125–171

    Chapter  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Velmurugan P, Park J-H, Murugan K, Lovanh N, Park Y-J, Oh B-Y, Venkatachalam P, Benelli G (2017) A novel photo-biological engineering method for Salvia miltiorrhiza-mediated fabrication of silver nanoparticles using LED lights sources and its effectiveness against Aedes aegypti mosquito larvae and microbial pathogens. Physiol Mol Plant Pathol. doi:10.1016/j.pmpp.2017.03.010

    Google Scholar 

  • Li ZZ, Xu SA, Wen LX, Liu F, Liu AQ, Wang Q, Sun HY, Yu W, Chen JF (2006) Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release. J Control Release 111:81–88

    Article  CAS  PubMed  Google Scholar 

  • Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen IX (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Liu Y, Tong Z, Prud’homme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64:808–812

    Article  CAS  PubMed  Google Scholar 

  • Loha KM, Shakil NA, Kumar J, Singh MK, Adak T, Jain S (2011) Release kinetics of beta-cyfluthrin from its encapsulated formulations in water. J Environ Sci Health B 46:201–206

    Article  CAS  PubMed  Google Scholar 

  • Loha KM, Shakil NA, Kumar J, Singh MK, Srivastava C (2012) Bio-efficacy evaluation of nanoformulations of beta-cyfluthrin against Callosobruchus maculatus (Coleoptera: Bruchidae). J Environ Sci Health B 47:687–691

    Article  CAS  PubMed  Google Scholar 

  • Lok C (2010) Nanotechnology: small wonders. Nature 467(7311):18–21

    Article  CAS  PubMed  Google Scholar 

  • Madhiyazhagan P, Murugan K, Naresh Kumar A, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Mahesh Kumar P, Suresh U, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Benelli G (2015) Sargassum muticum-synthetized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114:4305–4317

    Article  PubMed  Google Scholar 

  • Madhusudhanamurthy J, Usha Rani P, Sambasiva Rao KRS (2013) Organic–inorganic hybrids of nano silica and certain botanical compounds for their improved bioactivity against agricultural pests. Curr Trends Biotechnol Pharm 7:615–624

    CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Nanotechnology 2011:1–7

    Article  CAS  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108:1541–1549

    Article  PubMed  Google Scholar 

  • Martin-Ortigosa S, Valenstein JS, Lin VSY, Trewyn BG, Wang K (2012a) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA co delivery to plant cells via the biolistic method. Adv Funct Mater 22:3576–3582

    Article  CAS  Google Scholar 

  • Martin-Ortigosa S, Valenstein JS, Sun W, Moeller L, Fang N, Trewyn BG, Lin VSY, Wang K (2012b) Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method. Small 8:413–422

    Article  CAS  PubMed  Google Scholar 

  • Mingming A, Yuncong Z, Shun H, Deguang L, Pingliang L, Jianqiang L, Cao Y (2013) Preparation and characterization of 1-naphthylacetic acid-silica conjugated nanospheres for enhancement of controlled-release performance. Nanotechnology 24:035601

    Article  CAS  Google Scholar 

  • Müller RH, Junghanns JUAH (2006) Drug nanocrystals/nanosuspensions for the delivery of poorly soluble drugs. In: Torchilin VP (ed) Nanoparticles as drug carriers. Imperial College Press, London, pp 307–328

    Chapter  Google Scholar 

  • Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Kumar PM, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–2253

    Article  PubMed  Google Scholar 

  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Dinesh D, Jenil Kumar P, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Mehlhorn H, Benelli G (2015c) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res 114:4645–4654

    Article  PubMed  Google Scholar 

  • Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015d) Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res 114:3601–3610

    Article  PubMed  Google Scholar 

  • Nair R, Poulose A, Nagaoka Y, Yoshida Y, Maekawa T, Kumar D (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–2068

    Article  CAS  PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nayak PS, Arakha M, KumarA Asthana S, Mallick BC, Jha S (2016) An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. RSC Adv 6:8232–8242

    Article  CAS  Google Scholar 

  • Nguyen HM, Hwang IC, Park JW, Park HJ (2012) Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles. Pest Manag Sci 68:1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer CM, Doz P (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  • ObservatoryNano (2010) Nanotechnologies for nutrient and biocide delivery in agricultural production. Working paper, April 2010. http://www.observatorynano.eu/project/filesystem/files/Controlled%20delivery.pdf

  • Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Technol 7:161–164

    Article  CAS  Google Scholar 

  • Pankaj VS, Shakil NA, Kumar J, Singh MK, Singh K (2012) Bioefficacy evaluation of controlled release formulations based on amphiphilicnano-polymer of carbofuran against Meloidogyne incognita infecting tomato. J Environ Sci Health B 47:520–528

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Path J 22:295–302

    Article  Google Scholar 

  • Patil CD, Borase HP, Suryawanshi RK, Patil SV (2016) Trypsin inactivation by latex fabricated gold nanoparticles: a newstrategy towards insect control. Enzyme Microb Technol 92:18–25

    Article  CAS  PubMed  Google Scholar 

  • Pavel A, Creanga DE (2005) Chromosomal aberrations in plants under magnetic fluid influence. J Magn Magn Mater 289:469–472

    Article  CAS  Google Scholar 

  • Pavel A, Trifan M, Bara II, Creanga DE, Cotae C (1999) Accumulation dynamics and some cytogenetical tests at Chelidonium majus and Papaver somniferum callus under the magnetic liquid effect. J Magn Magn Mater 201:443–445

    Article  CAS  Google Scholar 

  • Pavunraj M, Baskar K, Duraipandiyan V, Al-Dhabi NA, Rajendran V, Benelli G (2017) Toxicity of Ag nanoparticles synthesized using stearic acid from Catharanthus roseus leaf extract against Earias vittella and mosquito vectors (Culex quinquefasciatus and Aedes aegypti). J Cluster Sci. doi:10.1007/s10876-017-1235-8

    Google Scholar 

  • Perez de Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  CAS  PubMed  Google Scholar 

  • Popat A, Hartono SB, Stahr F, Liu J, Qiao SZ, Lu GQM (2011) Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 3:2801–2818

    Article  CAS  PubMed  Google Scholar 

  • Puoci F, Lemma F, Spizzirri UG, Cirillo G, Curcio M, Picci N (2008) Polymer in agriculture: a review. Am J Agric Biol Sci 3:299–314

    Article  Google Scholar 

  • Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373

    Article  CAS  Google Scholar 

  • Rajasekharreddy P, Usha Rani P (2014a) Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Mater Sci Eng, C 39:203–212

    Article  CAS  Google Scholar 

  • Rajasekharreddy P, Usha Rani P (2014b) Biosynthesis and characterization of Pd and Pt nanoparticles using Piper betle L. plant in a photoreduction method. J Cluster Sci 25:1377–1388

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson DKR, Salejova-Zadrazilova G (2010) Nanotechnologies for nutrient and biocide delivery in agricultural production. Working Paper Version, pp 285–297

  • Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24:1040–1047

    Article  CAS  PubMed  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 109:823–831

    Article  PubMed  Google Scholar 

  • Sarkar DJ, Kumar J, Shakil NA, Walia S (2012) Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1701–1712

    Article  CAS  PubMed  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Berlin, pp 1–32

    Google Scholar 

  • Shakil NA, Singh MK, Pandey A, Kumar J, Pankaj Parmar VS, Singh MK, Pandey RP, Watterson AC (2010) Development of poly-(ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. J Macromol Sci A Pure Appl Chem 47:241–247

    Article  CAS  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization. Academic Press, New York

    Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46:10247–10254

    CAS  PubMed  Google Scholar 

  • Small T, Ochoa-Zapater MA, Gallello G, Ribera A, Romero FM, Torreblanca A, Garcerá MD (2016) Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach. Sci Total Environ 565:882–888

    Article  CAS  PubMed  Google Scholar 

  • Smith K, Evans DA, El-Hiti GA (2008) Role of modern chemistry in sustainable arable crop protection. Philos Trans R Soc B 363:623–637

    Article  CAS  Google Scholar 

  • Song SL, Liu XH, Jiang JH, Qian YH, Zhang N, Wu QH (2009) Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloid Surf A 350:57–62

    Article  CAS  Google Scholar 

  • Song MR, Cui SM, Gao F, Liu YR, Fan CL, Lei TQ, Liu DC (2012) Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J Pestic Sci 37:258–260

    Article  CAS  Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2014) Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitol Res 113:4015–4022

    Article  PubMed  Google Scholar 

  • Stadler T, Buteler M, Weaver D (2009) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66:577–579

    Google Scholar 

  • Stadler T, Buteler M, Weaver D, Sofie S (2012) Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Prod Res 48:81–90

    Article  Google Scholar 

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH, Benelli G (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res 22:20067–20083

    Article  CAS  Google Scholar 

  • Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang J-S, Kalimuthu K, Panneerselvam C, Higuchi A, Aziz AT, Kumar S, Alarfaj AA, Vaseeharan B, Canale A, Benelli G (2017) Green-synthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata. Aquat Toxicol 188:100–108

    Article  CAS  PubMed  Google Scholar 

  • Sundaravadivelan C, Padmanabhan MN (2014) Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res 21:4624–4633

    Article  CAS  Google Scholar 

  • Suresh G, Gunasekar PH, Kohila D, Prabhu D, Dinesh D, Ravichandran N, Ramesh B, Koodalingam A, Siva GV (2014) Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim Acta A 127:61–66

    Article  CAS  Google Scholar 

  • Suresh G, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Kumar PM, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  PubMed  Google Scholar 

  • Tadros T, Izquierdo R, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108:303–318

    Article  PubMed  CAS  Google Scholar 

  • Tomlin CDS (2009) The pesticide manual, 15th edn. Surrey, England British Crop Protection Council, Farnham

    Google Scholar 

  • Torchilin VP (2006) Introduction. Nanocarriers for drug delivery: needs and requirements. In: Torchilin VP (ed) Nanoparticles as drug carriers. Imperial College Press, London, pp 1–8

    Chapter  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Trematerra P, Athanassiou CG, Sciarretta A, Kavallieratos NG, Buchelos CTh (2013) Efficacy of the auto-confusion system for mating disruption of Ephestia kuehniella (Zeller) and Plodia interpunctella (Hubner). J Stored Prod Res 55:90–98

    Article  Google Scholar 

  • Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res 40:846–853

    Article  CAS  PubMed  Google Scholar 

  • Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18:137–147

    Article  CAS  PubMed  Google Scholar 

  • Ulrichs C, Krause F, Rocksch T, Goswami A, Mewis I (2006) Electrostatic application of inert silica dust based insecticides onto plant surfaces. Commun Agric Appl Biol Sci 71:171–178

    CAS  PubMed  Google Scholar 

  • Usha Rani P, Rajasekharreddy P (2011) Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloid Surf A 389:188–194

    Article  CAS  Google Scholar 

  • Usha Rani P, Madhusudhanamurthy J, Sreedhar B (2014) Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J Pest Sci 87:191–200

    Article  Google Scholar 

  • Vayias BJ, Athanassiou CG (2004) Factors affecting the insecticidal efficacy of the diatomaceous earth formulation SilicoSec against adults and larvae of the confused flour beetle, Tribolium confusum Du Val (Coleoptera: Tenebrionidae). Crop Prot 23:565–573

    Article  CAS  Google Scholar 

  • Veerakumar K, Govindarajan M (2014) Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res 113:4085–4096

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Hoti SL (2014) Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes. Parasitol Res 113:4567–4577

    Article  PubMed  Google Scholar 

  • Vinayaga Moorthi P, Balasubramaniam C, Mohan S (2015) An improved insecticidal activity of silver nanoparticle synthesized by using Sargassum muticum. Appl Biochem Biotechnol 175:135–140

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  PubMed  Google Scholar 

  • Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228

    Article  CAS  PubMed  Google Scholar 

  • Wen LX, Li ZZ, Zou HK, Liu AQ, Chen JF (2005) Controlled release of avermectin from porous hollow silica nanoparticles. Pest Manag Sci 61:583–590

    Article  CAS  PubMed  Google Scholar 

  • Werdin González JO, Gutiérrez MM, Ferrero AA, Fernández Band B (2014) Essential oils nanoformulations for stored-product pest control-characterization and biological properties. Chemosphere 100:130–138

    Article  PubMed  CAS  Google Scholar 

  • Werdin-Gonzalez JO, Yeguerman C, Marcovecchio D, Delrieux C, Ferrero A, Fernández-Band B (2016) Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach. Ecotoxicol Environ Saf 130:11–18

    Article  CAS  Google Scholar 

  • Xu J, Fan QJ, Yin ZQ, Li XT, Du YH, Jia RY, Wang KY, Lv C, Ye G, Geng Y, Su G, Zhao L, Hu TX, Shi F, Zhang L, Wu CL, Tao C, Zang YX, Shi DX (2010) The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Vet Parasitol 169:399–403

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yasur J, Usha Rani P (2013) Environmental effects of nano silver: impact on castor seed germination, seedling growth and plant physiology. Environ Sci Pollut Res 20:8636–8648

    Article  CAS  Google Scholar 

  • Yasur J, Usha Rani P (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Guo Q, Han Y, Wang L, Wan S (2012) Preparation, characterization and nematicidal activity of Lansiumamide B nano-capsules. J Integr Agric 11:1151–1158

    Article  CAS  Google Scholar 

  • Zhang HF, Wang D, Butler R, Campbell NL, Long J, Tan BE, Duncalf DJ, Foster AJ, Hopkinson A, Taylor D, Angus D, Cooper AI, Rannard SP (2008) Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 3:506–511

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank James Throne (USDA-ARS) for his constructive comments on an earlier version of this manuscript. DL acknowledges support from Grain Research Development Corporation (Grants UA 000131 and UA 000151). GB is supported by PROAPI (PRAF 2015) and University of Pisa, Department of Agriculture, Food and Environment (Grant ID: COFIN2015_22). URP expresses here acknowledgments to Jyothsna Yasur for her support while preparing the manuscript and also to the Ministry of Earth Sciences, New Delhi for the research grant related with NPs. CGA would like to thank the General Secretariat for Research and Technology for the Grants GSRT11-ROM-30-2-ET29 and 1422-BET-2013 and the Research Committee of the University of Thessaly for the Grants ELKE-UTH-4198 and 4975. Funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the University of Thessaly, Agricultural University of Athens, University of Pisa, University of Adelaide, CSIR-Indian Institute of Chemical Technology and French National Institute for Agricultural Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Athanassiou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

The research did not involve human participants and/or animals.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by M. Traugott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athanassiou, C.G., Kavallieratos, N.G., Benelli, G. et al. Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91, 1–15 (2018). https://doi.org/10.1007/s10340-017-0898-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-017-0898-0

Keywords

Navigation