Skip to main content
Log in

Explicit Topology Optimization with Moving Morphable Component (MMC) Introduction Mechanism

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this article, an explicit topology optimization approach with components-growing ability is proposed under the moving morphable component (MMC) framework. In this approach, the shape and topology layout of structures are explicitly optimized by growth evolution of moving morphable components. To this end, a competition criterion is developed to optimize the structural layout from two options: adding several new components or changing the current layout. In addition, some numerical technqiues are also developed to preserve the stability of the iterative process. The present topology optimization approach allows rational generation of new components and does not require a specific distribution of components in the initial design, which is compulsory for the conventional MMC method. Three numerical examples are provided to illustrate the effectiveness of the proposed method. The optimization results indicate that the proposed method does have the potential to improve the existing MMC-based explicit topology optimization framework by eliminating the initial design dependency of optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng. 1988;71(2):197–224.

    Article  MathSciNet  Google Scholar 

  2. Rozvany GI. A critical review of established methods of structural topology optimization. Struct Multidiscip Optim. 2008;37(3):217–37.

    Article  MathSciNet  Google Scholar 

  3. Guo X, Cheng G. Recent development in structural design and optimization. Acta Mech Sinica. 2010;26(6):807–23.

    Article  MathSciNet  Google Scholar 

  4. Deaton JD, Grandhi RV. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim. 2013;49(1):1–38.

    Article  MathSciNet  Google Scholar 

  5. Sigmund O, Maute K. Topology optimization approaches. Struct Multidiscip Optim. 2013;48(6):1031–55.

    Article  MathSciNet  Google Scholar 

  6. Sigmund O. On the design of compliant mechanisms using topology optimization. Mech Struct Mach. 1997;25(4):493–524.

    Article  Google Scholar 

  7. Du Y, Yan S, Zhang Y, Xie H, Tian Q. A modified interpolation approach for topology optimization. Acta Mech Solida Sinica. 2015;28(4):420–30.

    Article  Google Scholar 

  8. Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Comput Methods Appl Mech Eng. 2003;192(1–2):227–46.

    Article  MathSciNet  Google Scholar 

  9. Barrera JL, Geiss MJ, Maute K. Hole seeding in level set topology optimization via density fields. Struct Multidiscip Optim. 2020;61(4):1319–43.

    Article  MathSciNet  Google Scholar 

  10. Wang SY, Lim KM, Khoo BC, Wang MY. On hole nucleation in topology optimization using the level set methods. CMES Comput Model Eng Sci. 2007;21(3):219–38.

    MathSciNet  MATH  Google Scholar 

  11. Villanueva CH, Maute K. Density and level set-XFEM schemes for topology optimization of 3-D structures. Comput Mech. 2014;54(1):133–50.

    Article  MathSciNet  Google Scholar 

  12. Guo X, Zhang W, Zhong W. Doing topology optimization explicitly and geometrically—A new moving morphable components based framework. J Appl Mech. 2014;81(8):081009.

    Article  Google Scholar 

  13. Guo X, Zhang W, Zhang J, Yuan J. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng. 2016;310:711–48.

    Article  MathSciNet  Google Scholar 

  14. Bai J, Zuo W. Hollow structural design in topology optimization via moving morphable component method. Struct Multidiscip Optim. 2019;61(1):187–205.

    Article  Google Scholar 

  15. Zheng S, Tang WH, Li BT. A new topology optimization framework for stiffness design of beam structures based on the transformable triangular mesh algorithm. Thin-Walled Struct. 2020;154:106831.

    Article  Google Scholar 

  16. Eschenauer HA, Kobelev VV, Schumacher A. Bubble method for topology and shape optimization of structures. Struct Optim. 1994;8(1):42–51.

    Article  Google Scholar 

  17. Novotny AA, Feijóo RA, Taroco E, Padra C. Topological sensitivity analysis. Comput Methods Appl Mech Eng. 2003;192(7–8):803–29.

    Article  MathSciNet  Google Scholar 

  18. Nazarov SA, Sokołowski J. Asymptotic analysis of shape functionals. J de Mathématiques Pures et Appliquées. 2003;82(2):125–96.

    Article  MathSciNet  Google Scholar 

  19. Lee S, Kwak BM. Smooth boundary topology optimization for eigenvalue performance and its application to the design of a flexural stage. Eng Optim. 2008;40(3):271–85.

    Article  MathSciNet  Google Scholar 

  20. Norato JA, Bendse MP, Haber RB, Tortorelli DA. A topological derivative method for topology optimization. Struct Multidiscip Optim. 2007;33(4):375–86.

    Article  MathSciNet  Google Scholar 

  21. Dunning PD, Alicia Kim H. A new hole insertion method for level set based structural topology optimization. Int J Numer Methods Eng. 2013;93(1):118–34.

    Article  MathSciNet  Google Scholar 

  22. Cai SY, Zhang WH. An adaptive bubble method for structural shape and topology optimization. Comput Methods Appl Mech Eng. 2020;360:112778.

    Article  MathSciNet  Google Scholar 

  23. Hou W, Gai Y, Zhu X, Wang X, Zhao C, Xu L, Jiang K, Hu P. Explicit isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng. 2017;326:694–712.

    Article  MathSciNet  Google Scholar 

  24. Sun J, Tian Q, Hu H, Pedersen NL. Topology optimization for eigenfrequencies of a rotating thin plate via moving morphable components. J Sound Vib. 2019;448:83–107.

    Article  Google Scholar 

  25. Takalloozadeh M, Yoon GH. Implementation of topological derivative in the moving morphable components approach. Finite Elements Anal Design. 2017;134:16–26.

    Article  Google Scholar 

  26. Du Z, Chen H, Huang G. Optimal quantum valley Hall insulators by rationally engineering Berry curvature and band structure. J Mech Phys Solids. 2020;135:103784.

    Article  MathSciNet  Google Scholar 

  27. Xie X, Wang S, Xu M, Wang Y. A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes. Comput Methods Appl Mech Eng. 2018;339:61–90.

    Article  MathSciNet  Google Scholar 

  28. Yu M, Ruan S, Wang X, Li Z, Shen C. Topology optimization of thermal-fluid problem using the MMC-based approach. Struct Multidiscip Optim. 2019;60(1):151–65.

    Article  MathSciNet  Google Scholar 

  29. Zhang W, Yuan J, Zhang J, Guo X. A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multidiscip Optim. 2016;53(6):1243–60.

    Article  MathSciNet  Google Scholar 

  30. Zhu B, Chen Q, Wang R, Zhang X. Structural topology optimization using a moving morphable component-based method considering geometrical nonlinearity. J Mech Design. 2018;140(8):081403.

    Article  Google Scholar 

  31. Mura T. Micromechanics of defects in solids. Distributors for the U.S. and Canada: Kluwer Academic Publishers; 1987.

  32. Liu C, Zhu Y, Sun Z, Li D, Du Z, Zhang W, Guo X. An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. Struct Multidiscip Optim. 2018;58(6):2455–79.

    Article  MathSciNet  Google Scholar 

  33. Zhang W, Zhang J, Guo X. Lagrangian description based topology optimization—A revival of shape optimization. J Appl Mech. 2016;83(4):041010.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 11821202), the National Natural Science Foundation of China (Grant Nos. 11872138, 11702048, 11732004, 11772076 and 12002073), the 111 Project (Grant No. B14013), the Young Elite Scientists Sponsorship Program by CAST (Grant No. 2018QNRC001), the Fundamental Research Funds for the Central Universities, China (DUT20RC(3)020, DUT21RC(3)076) and Dalian Talent Innovation Program (2020RQ099).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongliang Du or Xu Guo.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, T., Du, Z., Liu, C. et al. Explicit Topology Optimization with Moving Morphable Component (MMC) Introduction Mechanism. Acta Mech. Solida Sin. 35, 384–408 (2022). https://doi.org/10.1007/s10338-021-00308-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00308-x

Keywords

Navigation