Skip to main content
Log in

Hole seeding in level set topology optimization via density fields

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Two approaches that use a density field for seeding holes in level set topology optimization are proposed. In these approaches, the level set field describes the material-void interface while the density field describes the material distribution within the material phase. Both fields are optimized simultaneously by coupling them through either a single abstract design variable field or a penalty term introduced into the objective function. These approaches eliminate drawbacks of level set topology optimization methods that rely on seeding the initial design domain with a large number of holes. Instead, the proposed approaches insert holes during the optimization process where beneficial. The dependency of the optimization results on the initial hole pattern is reduced, and the computational costs are lowered by keeping the number of elements intersected by the material interface at a minimum. In comparison with level set methods that use topological derivatives to seed small holes at distinct steps in the optimization process, the proposed approaches introduce holes continuously during the optimization process, with the hole size and shape being optimized for the particular design problem. The proposed approaches are studied using the extended finite element method for spatial discretization, and the solid isotropic material with penalization for material interpolation using fictitious densities. Their robustness with respect to algorithmic parameters, dependency on the density penalization, and performance are examined through 2D and 3D benchmark linear elastic numerical examples, and a geometrically complex mass minimization with stress constraint design problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    MathSciNet  MATH  Google Scholar 

  • Allaire G, De Gournay F, Jouve F, Toader A-M (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59

    MathSciNet  MATH  Google Scholar 

  • Amestoy PR, Guermouche A, L’Excellent J-Y, Pralet S (2006) Hybrid scheduling for the parallel solution of linear systems. Parallel Comput 32(2):136–156

    MathSciNet  Google Scholar 

  • Andreasen C, Elingaard M, Aage N (2019) Level set topology and shape optimization by density methods using cutfem. Pre-print

  • Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40(4):727–758

    MathSciNet  MATH  Google Scholar 

  • Barrera JL, Geiss MJ, Maute K (2019) A combined level set-XFEM- and density-based topology optimization approach. In: XIII World conference in structural and multidisciplinary optimization

  • Behrou R, Lawry M, Maute K (2017) Level set topology optimization of structural problems with interface cohesion. Int J Numer Methods Eng 112(8):990–1016

    MathSciNet  Google Scholar 

  • Belytschko T, Xiao S, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196

    MATH  Google Scholar 

  • Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Modell Simul Mater Sci Eng 17(4):043001

  • Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods, and applications. Springer, Berlin

  • Bletzinger K-U, Maute K (1997) Towards generalized shape and topology optimization. Eng Optim 29 (1-4):201–216

    Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362

    MathSciNet  MATH  Google Scholar 

  • Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math 62(4):328–341

    MathSciNet  MATH  Google Scholar 

  • Burman E, Hansbo P (2014) Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes problem. ESAIM: Math Modell Numer Anal 48(3):859–874

    MathSciNet  MATH  Google Scholar 

  • Burman E, Claus S, Hansbo P, Larson MG, Massing A (2015) cutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng 104(7):472–501

    MathSciNet  MATH  Google Scholar 

  • Burman E, Elfverson D, Hansbo P, Larson MG, Larsson K (2019) Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions. Comput Methods Appl Mech Eng 350:462–479

    MathSciNet  MATH  Google Scholar 

  • Coffin P, Maute K (2016) Level set topology optimization of cooling and heating devices using a simplified convection model. Struct Multidiscip Optim 53(5):985–1003

    Google Scholar 

  • Crane K, Weischedel C, Wardetzky M (2017) The heat method for distance computation. Commun ACM 60(11):90–99

    Google Scholar 

  • Deng S, Suresh K (2015) Multi-constrained topology optimization via the topological sensitivity. Struct Multidiscip Optim 51(5):987–1001

    MathSciNet  Google Scholar 

  • Deng S, Suresh K (2016) Multi-constrained 3D topology optimization via augmented topological level-set. Comput Struct 170:1–12

    Google Scholar 

  • Dunning PD, Kim AH (2013) A new hole insertion method for level set based structural topology optimization. Int J Numer Methods Eng 93(1):118–134

    MathSciNet  MATH  Google Scholar 

  • Elfving T (1980) Block-iterative methods for consistent and inconsistent linear equations. Numer Math 35 (1):1–12

    MathSciNet  MATH  Google Scholar 

  • Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51

    Google Scholar 

  • Geiss MJ (2019) Level-set-XFEM-density topology optimization of active structures: methods and applications. PhD thesis, University of Colorado at Boulder

  • Geiss MJ, Maute K (2018) Topology optimization of active structures using a higher-order level-set-XFEM-density approach. In: 2018 Multidisciplinary analysis and optimization conference, pp 4053

  • Geiss MJ, Barrera JL, Boddeti N, Maute K (2019a) A regularization scheme for explicit level-set XFEM topology optimization. Front Mech Eng 14(2):153–170

  • Geiss MJ, Boddeti N, Weeger O, Maute K, Dunn ML (2019b) Combined level-set-XFEM-density topology optimization of four-dimensional printed structures undergoing large deformation. J Mech Des 141(5):051405

  • Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET et al (2005) An overview of the trilinos project. ACM Trans Math Softw (TOMS) 31(3):397–423

    MathSciNet  MATH  Google Scholar 

  • Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43(3):393

    MathSciNet  MATH  Google Scholar 

  • Jansen M (2019) Explicit level set and density methods for topology optimization with equivalent minimum length scale constraints. Struct Multidiscip Optim 59(5):1775–1788

    MathSciNet  Google Scholar 

  • Kang Z, Wang Y (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13

    MathSciNet  MATH  Google Scholar 

  • Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326

    MathSciNet  MATH  Google Scholar 

  • Kumar A, Gossard D (1996) Synthesis of optimal shape and topology of structures. J Mech Des 118 (1):68–74

    Google Scholar 

  • Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197

    MathSciNet  Google Scholar 

  • Maute K, Ramm E (1995) Adaptive topology optimization. Struct Optim 10(2):100–112

    MATH  Google Scholar 

  • Maute K, Ramm E (1997) Adaptive topology optimization of shell structures. AIAA J 35(11):1767–1773

    MATH  Google Scholar 

  • Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91

    Google Scholar 

  • Maute K, Tkachuk A, Wu J, Qi HJ, Ding Z, Dunn ML (2015) Level set topology optimization of printed active composites. J Mech Des 137(11):111402

  • Nitsche J (1971) ÜBer ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. In: Abhandlungen aus dem mathematischen seminar der universität hamburg, vol 36. Springer, pages 9–15

  • Norato JA, Bendsøe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidiscip Optim 33(4-5):375–386

    MathSciNet  MATH  Google Scholar 

  • Park K-S, Youn S-K (2008) Topology optimization of shell structures using adaptive inner-front (aif) level set method. Struct Multidiscip Optim 36(1):43–58

    MathSciNet  MATH  Google Scholar 

  • Schott B, Wall W (2014) A new face-oriented stabilized XFEM approach for 2d and 3d incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 276:233–265

    MathSciNet  MATH  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    MathSciNet  MATH  Google Scholar 

  • Sharma A, Maute K (2018) Stress-based topology optimization using spatial gradient stabilized XFEM. Struct Multidiscip Optim 57(1):17–38

    MathSciNet  Google Scholar 

  • Sharma A, Villanueva H, Maute K (2017) On shape sensitivities with heaviside-enriched XFEM. Struct Multidiscip Optim 55(2):385–408

    MathSciNet  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    MathSciNet  Google Scholar 

  • Soghrati S, Barrera JL (2016) On the application of higher-order elements in the hierarchical interface-enriched finite element method. Int J Numer Methods Eng 105(6):403–415

    MathSciNet  Google Scholar 

  • Sokolowski J, Zochowski A (1999) Topological derivative for optimal control problems. Control Cybern 28:611–625

    MathSciNet  MATH  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124

    Google Scholar 

  • Suresh K (2010) A 199-line MAtlab code for Pareto-optimal tracing in topology optimization. Struct Multidiscip Optim 42(5):665–679

    MathSciNet  MATH  Google Scholar 

  • Suresh K (2013) Efficient generation of large-scale pareto-optimal topologies. Struct Multidiscip Optim 47 (1):49–61

    MathSciNet  MATH  Google Scholar 

  • Suresh K, Takalloozadeh M (2013) Stress-constrained topology optimization: a topological level-set approach. Struct Multidiscip Optim 48(2):295–309

    MathSciNet  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    MathSciNet  MATH  Google Scholar 

  • Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346

    MATH  Google Scholar 

  • Tran A, Yvonnet J, He Q-C, Toulemonde C, Sanahuja J (2011) A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM. Int J Numer Methods Eng 85(11):1436–1459

    MATH  Google Scholar 

  • van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    MathSciNet  Google Scholar 

  • Villanueva CH, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-D structures. Comput Mech 54(1):133–150

    MathSciNet  MATH  Google Scholar 

  • Villanueva CH, Maute K (2017) CutFEM topology optimization of 3d laminar incompressible flow problems. Comput Methods Appl Mech Eng 320:444–473

    MathSciNet  MATH  Google Scholar 

  • Wang X, Mei Y, Wang M (2004) Incorporating topological derivatives into level set methods for structural topology optimization. In: 10Th AIAA/ISSMO multidisciplinary analysis and optimization conference, pp 4564

  • Wang S, Lim K, Khoo B, Wang M (2007a) On hole nucleation in topology optimization using the level set methods. Comput Model Eng Sci 21(3):219

  • Wang S, Lim K, Khoo B, Wang M (2007b) An extended level set method for shape and topology optimization. J Comput Phys 221(1):395–421

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    MATH  Google Scholar 

  • Xia Q, Shi T, Xia L (2018) Topology optimization for heat conduction by combining level set method and BESO method. Int J Heat Mass Transfer 127:200–209

    Google Scholar 

  • Xia Q, Shi T, Xia L (2019) Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO. Comput Methods Appl Mech Eng 343:438–452

    MathSciNet  MATH  Google Scholar 

Download references

Funding

All authors acknowledge the support of the National Science Foundation (CMMI-1463287). The third author acknowledges the support of the Defense Advanced Research Projects Agency (DARPA) under the TRADES program (agreement HR0011-17-2-0022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge L. Barrera.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Replication of results

Upon request, the authors will provide the full set of input parameters for the topology optimization problems presented in this paper. Any optimization framework with an implementation of the approaches introduced here should be able to reproduce the results shown in the examples section.

Disclaimer

The opinions and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organizations.

Additional information

Responsible Editor: Gengdong Cheng

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrera, J.L., Geiss, M.J. & Maute, K. Hole seeding in level set topology optimization via density fields. Struct Multidisc Optim 61, 1319–1343 (2020). https://doi.org/10.1007/s00158-019-02480-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02480-8

Keywords

Navigation