Skip to main content
Log in

A Peridynamics-Based Finite Element Method (PeriFEM) for Quasi-Static Fracture Analysis

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this paper, a peridynamics-based finite element method (PeriFEM) is proposed for the quasi-static fracture analysis, which is of the consistent computational framework with the classical finite element method (FEM). First, the integral domain of peridynamics is reconstructed, and a new type of element called peridynamic element (PE) is defined. Although PEs are generated by the continuous elements (CEs) of classical FEM, they do not affect each other. Then, spatial discretization is performed based on PEs and CEs, and the linear equations about nodal displacement are established according to the principle of minimum potential energy. Besides, cracks are characterized as degradation of the mechanical properties of PEs. Finally, the validity of the proposed method is demonstrated through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng. 1999;45(5):601–20.

    Article  Google Scholar 

  2. Daux C, Moës N, Dolbow J, et al. Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Meth Eng. 2000;48(12):1741–60.

    Article  Google Scholar 

  3. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Meth Eng. 1999;46(1):131–50.

    Article  MathSciNet  Google Scholar 

  4. Bellec J, Dolbow JE. A note on enrichment functions for modelling crack nucleation. Commun Numer Methods Eng. 2003;19(12):921–32.

    Article  Google Scholar 

  5. Francfort GA, Marigo JJ. Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids. 1998;46(8):1319–42.

    Article  MathSciNet  Google Scholar 

  6. Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. J Mech Phys Solids. 2000;48(4):797–826.

    Article  MathSciNet  Google Scholar 

  7. Ziaei-Rad V, Shen Y. Massive parallelization of the phase field formulation for crack propagation with time adaptivity. Comput Meth Appl Mech Eng. 2016;312:224–53.

    Article  MathSciNet  Google Scholar 

  8. Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids. 2000;48(1):175–209.

    Article  MathSciNet  Google Scholar 

  9. Silling SA, Epton M, Weckner O, et al. Peridynamic states and constitutive modeling. J Elast. 2007;88(2):151–84.

    Article  MathSciNet  Google Scholar 

  10. Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Comput Struct. 2005;83(17–18):1526–35.

    Article  Google Scholar 

  11. Ren B, Wu CT, Askari E. A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis. Int J Impact Eng. 2017;99:14–25.

    Article  Google Scholar 

  12. Chen X, Gunzburger M. Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput Meth Appl Mech Eng. 2011;200(9–12):1237–50.

    Article  MathSciNet  Google Scholar 

  13. Azdoud Y, Han F, Lubineau G. The morphing method as a flexible tool for adaptive local/non-local simulation of static fracture. Comput Mech. 2014;54(3):711–22.

    Article  MathSciNet  Google Scholar 

  14. Lubineau G, Azdoud Y, Han F, et al. A morphing strategy to couple non-local to local continuum mechanics. J Mech Phys Solids. 2012;60(6):1088–102.

    Article  MathSciNet  Google Scholar 

  15. Silling SA, Lehoucq RB. Peridynamic theory of solid mechanics. Adv Appl Mech. 2010;44:73–168.

    Article  Google Scholar 

  16. Silling SA, Weckner O, Askari E, et al. Crack nucleation in a peridynamic solid. Int J Fract. 2010;162(1):219–27.

    Article  Google Scholar 

  17. Foster J T, Silling S A, Chen W. An energy based failure criterion for use with peridynamic states. Int J Multiscale Comput Eng. 2011, 9(6).

  18. Yu H, Li S. On energy release rates in Peridynamics. J Mech Phys Solids. 2020;142:104024.

    Article  MathSciNet  Google Scholar 

  19. Yang D, He X, Liu X, et al. A peridynamics-based cohesive zone model (PD-CZM) for predicting cohesive crack propagation. Int J Mech Sci. 2020;184:105830.

    Article  Google Scholar 

  20. Yang D, He X, Zhu J, et al. A novel damage model in the peridynamics-based cohesive zone method (PD-CZM) for mixed mode fracture with its implicit implementation. Comput Meth Appl Mech Eng. 2021;377:113721.

    Article  MathSciNet  Google Scholar 

  21. Wang Y, Han F, Lubineau G. Strength-induced peridynamic modeling and simulation of fractures in brittle materials. Comput Meth Appl Mech Eng. 2021;374:113558.

    Article  MathSciNet  Google Scholar 

  22. Han F, Lubineau G, Azdoud Y, et al. A morphing approach to couple state-based peridynamics with classical continuum mechanics. Comput Meth Appl Mech Eng. 2016;301:336–58.

    Article  MathSciNet  Google Scholar 

  23. Azdoud Y, Han F, Lubineau G. A morphing framework to couple non-local and local anisotropic continua. Int J Solids Struct. 2013;50(9):1332–41.

    Article  Google Scholar 

  24. Haeri H, Shahriar K, Marji MF, et al. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. Int J Rock Mech Min Sci. 2014;67:20–8.

    Article  Google Scholar 

  25. Nooru-Mohamed MB, Schlangen E, van Mier JGM. Experimental and numerical study on the behavior of concrete subjected to biaxial tension and shear. Adv Cem Based Mater. 1993;1(1):22–37.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (11872016), Fundamental Research Funds for the Central Universities (DUT20RC(5)005, DUT20LAB203) and the Key Research and Development Project of Liaoning Province (2020JH2/10500003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Li, Z. A Peridynamics-Based Finite Element Method (PeriFEM) for Quasi-Static Fracture Analysis. Acta Mech. Solida Sin. 35, 446–460 (2022). https://doi.org/10.1007/s10338-021-00307-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00307-y

Keywords

Navigation