Skip to main content
Log in

Preparation of Cationic Mixed-Mode Acrylamide-Based Monolithic Stationary Phases for Capillary Electrochromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A series of amphiphilic macroporous mixed-mode acrylamide-based continuous beds bearing positively charged quaternary ammonium groups is synthesized for capillary electrochromatography (CEC) under variation of the concentration of the cationic monomer in the polymerization mixture. Positively charged mixed-mode monolithic stationary phases are synthesized in pre-treated fused silica capillaries of 100 µm I.D via single step free radical copolymerization of cyclodextrin-solubilized N-tert-butylacrylamide, a hydrophilic crosslinker (piperazine diacrylamide), a hydrophilic neutral monomer (methacrylamide), and a positively charged monomer ([2-(methacryloyloxy)ethyl]trimethyl ammonium methyl sulfate) in aqueous solution containing the lyotropic salt ammonium sulfate as a pore-forming agent. The synthesized monolithic stationary phases contain hydrophobic, hydrophilic, and charged functionalities. They can be employed for the CEC separations of different classes of neutral and charged solutes (with varied polarity) in the reversed-phase mode, in the normal-phase mode, in the ion-exchange mode, in a mixed-mode, or in the hydrophilic interaction liquid chromatography (HILIC) mode. The influence of the concentration of the cationic monomer in the polymerization mixture on retention factor, electroosmotic mobility, and methylene selectivity (αmeth) is studied under isocratic conditions for alkylphenones in the reversed-phase mode by capillary electrochromatography (CEC). Scanning electron microscopy (SEM) micrographs demonstrate that the morphology of the synthesized monoliths (i.e., the domain size) is strongly influenced by the variation of the concentration of the cationic monomer in the polymerization mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Umeda H, Kitagawa S, Ohtani H (2015) Zone sharpening of peptides in pressurized capillary electrochromatography using dynamic pH junction. Anal Sci 31:1151–1154

    Article  CAS  PubMed  Google Scholar 

  2. Kasicka V (2016) Recent developments in capillary and microchip electroseparations of peptides (2013–middle 2015). Electrophoresis 37:162–188

    Article  CAS  PubMed  Google Scholar 

  3. Chen Z, Huang C, Liu W, Zhang L, Tong P, Zhang L (2015) Simultaneous determination of nucleoside and purine compounds in human urine based on a hydrophobic monolithic column using capillary electrochromatography. Electrophoresis 36:2727–2735

    Article  CAS  PubMed  Google Scholar 

  4. Chen Z, Zhang L, Lu Q, Ye Q, Zhang L (2015) On-line concentration and pressurized capillary electrochromatography analysis of five β-agonists in human urine using a methacrylate monolithic column. Electrophoresis 36:2720–2726

    Article  CAS  PubMed  Google Scholar 

  5. Moravcova D, Rantamaki AH, Dusa F, Wiedmer SK (2016) Review Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry. Electrophoresis 37:880–912

    Article  CAS  PubMed  Google Scholar 

  6. Chen XJ, Yang FQ, Wang YT, Li SP (2010) CE and CEC of nucleosides and nucleotides in food materials. Electrophoresis 31:2092–2106

    Article  CAS  PubMed  Google Scholar 

  7. D’Orazio G, Asensio-Ramos M, Fanali C (2016) Capillary electrochromatography in food analysis. Trends Anal Chem 82:250–267

    Article  CAS  Google Scholar 

  8. Declerck S, Heyden YV, Mangelings D (2016) Enantioseparations of pharmaceuticals with capillary electrochromatography: a review. J Pharm Biomed Anal 130:81–99

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Schaufelberger DE, Guzman NA (1998) Rapid analysis of norgestimate and its potential degradation products by capillary electrochromatography. J Chromatogr Sci 36:155–160

    Article  CAS  Google Scholar 

  10. Taylor MR, Teale P, Westwood SA (1997) Analysis of corticosteroids in biofluids by capillary electrochromatography with gradient elution. Anal Chem 69:2554–2558

    Article  CAS  PubMed  Google Scholar 

  11. Miksik I, Sedlakova P (2007) Capillary electrochromatography of proteins and peptides. J Sep Sci 30:1686–1703

    Article  CAS  PubMed  Google Scholar 

  12. Tejada-Casado C, Hernandez-Mesa M, Olmo-Iruela MD, Garcia-Campana AM (2016) Capillary electrochromatography coupled with dispersive liquid-liquid microextraction for the analysis of benzimidazole residues in water samples. Talanta 161:8–14

    Article  CAS  PubMed  Google Scholar 

  13. Al-Massaedh AA, Schmidt M, Pyell U, Reinscheid UM (2016) Elucidation of the enantiodiscrimination properties of a nonracemic chiral alignment medium through gel based capillary electrochromatography: separation of the mefloquine stereoisomers. ChemistryOpen 5:455–459

    Article  CAS  PubMed  Google Scholar 

  14. Pretorius V, Hopkins BJ, Schieke JD (1974) Electroosmosis. New concept for high speed liquid chromatography. J Chromatogr 99:23–30

    Article  CAS  Google Scholar 

  15. Jorgenson JW, Lukacs KD (1981) High-resolution separations based on electrophoresis and electroosmosis. J Chromatogr 218:209–216

    Article  CAS  Google Scholar 

  16. Chester TL (2013) Recent developments in high-performance liquid chromatography stationary phases. Anal Chem 85:579–589

    Article  CAS  PubMed  Google Scholar 

  17. Atia NN, York P, Clark BJ (2009) Comparison between monolithic and particle-packed platinum C18 columns in HPLC determination of acidic and basic test mixtures. J Sep Sci 32:2732–2736

    Article  CAS  PubMed  Google Scholar 

  18. Unger KK, Skudas R, Schulte MM (2008) Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal. J Chromatogr A 1184:393–415

    Article  CAS  PubMed  Google Scholar 

  19. Nischang I (2013) Porous polymer monoliths: morphology, porous properties, polymer nano-scale gel structure and their impact on chromatographic performance. J Chromatogr A 1287:39–58

    Article  CAS  PubMed  Google Scholar 

  20. Laher M, Causon TJ, Buchberger W, Hild S, Nischang I (2013) Assessing the nanoscale structure and mechanical properties of polymer monoliths used for chromatography. Anal Chem 85:5645–5649

    Article  CAS  PubMed  Google Scholar 

  21. Nischang I (2012) On the chromatographic efficiency of analytical scale column format porous polymer monoliths: Interplay of morphology and nanoscale gel porosity. J Chromatogr A 1236:152–163

    Article  CAS  PubMed  Google Scholar 

  22. Nischang I, Teasdale I, Brueggemann O (2011) Porous polymer monoliths for small molecule separations: advancements and limitations. Anal Bioanal Chem 400:2289–2304

    Article  CAS  PubMed  Google Scholar 

  23. Urban J, Jandera P (2013) Recent advances in the design of organic polymer monoliths for reversed-phase and hydrophilic interaction chromatography separations of small molecules. Anal Bioanal Chem 405:2123–2131

    Article  CAS  PubMed  Google Scholar 

  24. Al-Massaedh AA, Pyell U (2013) Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part I: study of a synthesis procedure including solubilization of N-adamantyl-acrylamide via complex formation with a water-soluble cyclodextrin. J Chromatogr A 1286:183–191

    Article  CAS  PubMed  Google Scholar 

  25. Muellner T, Zankel A, Mayrhofer C, Reingruber H, Hoeltzel A, Lv Y, Svec F, Tallarek U (2012) Reconstruction and characterization of a polymer-based monolithic stationary phase using serial block-face scanning electron microscopy. Langmuir 28:16733–16737

    Article  CAS  Google Scholar 

  26. Greiderer A, Ligon SC Jr, Huck CW, Bonn GK (2010) Organic monoliths as stationary phases in chromatography. In: Wang PG (ed) Monolithic chromatography and its modern applications. ILM Publications, Hertfordshire

    Google Scholar 

  27. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168

    Article  CAS  PubMed  Google Scholar 

  28. Nischang I, Brueggemann O (2010) On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths. J Chromatogr A 1217:5389–5397

    Article  CAS  PubMed  Google Scholar 

  29. Al-Massaedh AA, Pyell U (2016) Mixed-mode acrylamide-based continuous beds bearing tert-butyl groups for capillary electrochromatography synthesized via complexation of N-tert-butylacrylamide with a water-soluble cyclodextrin. Part I: retention properties. J Chromatogr A 1477:114–126

    Article  CAS  PubMed  Google Scholar 

  30. Al-Massaedh AA, Pyell U (2017) Mixed Mode acrylamide-based continuous beds bearing tert-butyl groups for capillary electrochromatography synthesized via complexation of N-tert-butylacrylamide with a water-soluble cyclodextrin. Part II: effect of capillary size and polymerization conditions on morphology and chromatographic efficiency. Chromatographia 80:1669–1682

    Article  CAS  Google Scholar 

  31. Al-Rimawi F, Pyell U (2006) The use of derivatized cyclodextrins as solubilizing agents in the preparation of macroporous polymers employed as amphiphilic continuous beds in capillary electrochromatography. J Sep Sci 29:2816–2826

    Article  CAS  PubMed  Google Scholar 

  32. Wahl A, Schnell I, Pyell U (2004) Capillary electrochromatography with polymeric continuous beds synthesized via free radical polymerization in aqueous media using derivatized cyclodextrins as solubilizing agents. J Chromatogr A 1044:211–222

    Article  CAS  PubMed  Google Scholar 

  33. Al-Massaedh AA, Pyell U (2014) Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part II. Characterization of the synthesized monoliths by inverse size exclusion chromatography and scanning electron microscopy. J Chromatogr A 1325:247–255

    Article  CAS  Google Scholar 

  34. Al-Massaedh AA, Pyell U (2014) Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part III. Optimization of the chromatographic efficiency. J Chromatogr A 1325:186–194

    Article  CAS  PubMed  Google Scholar 

  35. Al-Massaedh AA, Pyell U (2014) Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part IV: investigation of the chromatographic efficiency dependent on the retention mode. J Chromatogr A 1349:80–89

    Article  CAS  PubMed  Google Scholar 

  36. Bedair M, El Rassi Z (2003) Capillary electrochromatography with monolithic stationary phases II. Preparation of cationic stearyl-acrylate monoliths and their electrochromatographic characterization. J Chromatogr A 1013:35–45

    Article  CAS  PubMed  Google Scholar 

  37. Bedair M, El Rassi Z (2004) Affinity chromatography with monolithic capillary columns I. Polymethacrylate monoliths with immobilized mannan for the separation of mannose-binding proteins by capillary electrochromatography and nano-scale liquid chromatography. J Chromatogr A 1044:177–186

    Article  CAS  PubMed  Google Scholar 

  38. Wang X, Ding K, Yang C, Lin X, Lu H, Wu X, Xie Z (2010) Sulfoalkylbetaine-based monolithic column with mixed-mode of hydrophilic interaction and strong anion-exchange stationary phase for capillary electrochromatography. Electrophoresis 31:2997–3005

    Article  CAS  PubMed  Google Scholar 

  39. Fu H, Xie C, Xiao H, Dong J, Hu J, Zou H (2004) Monolithic columns with mixed modes of reversed-phase and anion-exchange stationary phase for capillary electrochromatography. J Chromatogr A 1044:237–244

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Zheng Y, Zhang C, Yang Y, Lin X, Huang G, Xie Z (2012) Preparation and characterization of hybrid-silica monolithic column with mixed-mode of hydrophilic and strong anion-exchange interactions for pressurized capillary electrochromatography. J Chromatogr A 1239:56–63

    Article  CAS  PubMed  Google Scholar 

  41. Lin J, Lin J, Lin X, Xie Z (2009) Preparation of a mixed-mode hydrophilic interaction/anion-exchange polymeric monolithic stationary phase for capillary liquid chromatography of polar analytes. J Chromatogr A 1216:801–806

    Article  CAS  PubMed  Google Scholar 

  42. Allen D, El Rassi Z (2003) Capillary electrochromatography with monolithic-silica columns. II. Preparation of amphiphilic silica monoliths having surface-bound cationic octadecyl moieties and their chromatographic characterization and application to the separation of proteins and other neutral and charged species. Analyst 128:1249–1256

    Article  CAS  PubMed  Google Scholar 

  43. Shediac R, Ngola SM, Throckmorton DJ, Anex DS, Shepodd TJ, Singh AK (2001) Reversed-phase electrochromatography of amino acids and peptides using porous polymer monoliths. J Chromatogr A 925:251–263

    Article  CAS  PubMed  Google Scholar 

  44. Yang C, El Rassi Z (2000) Electrically driven microseparation methods for pesticides and metabolites: III. Capillary electrochromatography with novel silica-based stationary phases having a surface-bound surfactant moiety. Electrophoresis 21:1977–1984

    Article  CAS  PubMed  Google Scholar 

  45. Laemmerhofer M, Tobler E, Lindner W (2000) Chiral anion exchangers applied to capillary electrochromatography enantioseparation of oppositely charged chiral analytes: investigation of stationary and mobile phase parameters. J Chromatogr A 887:421–437

    Article  Google Scholar 

  46. Hilder EF, Macka M, Haddad PR (1999) Mixed-mode capillary electrochromatographic separation of anionic analytes. Anal Commun 36:299–303

    Article  CAS  Google Scholar 

  47. Laemmerhofer M, Svec F, Frechet JMJ, Lindner W (2001) Capillary electrochromatography in anion-exchange and normal-phase mode using monolithic stationary phases. J Chromatogr A 925:265–277

    Article  Google Scholar 

  48. Zhang S, Huang X, Zhang J, Horvath C (2000) Capillary electrochromatography of proteins and peptides with a cationic acrylic monolith. J Chromatogr A 887:465–477

    Article  PubMed  Google Scholar 

  49. Hilder EF, Svec F, Frechet JMJ (2004) Latex-functionalized monolithic columns for the separation of carbohydrates by micro anion-exchange chromatography. J Chromatogr A 1053:101–106

    Article  CAS  PubMed  Google Scholar 

  50. Gusev I, Huang X, Horvath C (1999) Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. J Chromatogr A 855:273–290

    Article  CAS  PubMed  Google Scholar 

  51. Savina IN, Galaev IY, Mattiasson B (2006) Ion-exchange macroporous hydrophilic gel monolith with grafted polymer brushes. J Mol Recognit 19:313–321

    Article  CAS  PubMed  Google Scholar 

  52. Gunasena DN, El Rassi Z (2013) Neutral, charged and stratified polar monoliths for hydrophilic interaction capillary electrochromatography. J Chromatogr A 1317:77–84

    Article  CAS  PubMed  Google Scholar 

  53. Kornysova O, Maruska A, Owens PK, Erickson M (2005) Non-particulate (continuous bed or monolithic) acrylate-based capillary columns for reversed-phase liquid chromatography and electrochromatography. J Chromatogr A 1071:171–178

    Article  CAS  PubMed  Google Scholar 

  54. Augustin V, Stachowiak T, Svec F, Frechet JMJ (2008) CEC separation of peptides using a poly(hexyl acrylate-co-1,4-butanediol diacrylate-co-[2-(acryloyloxy)ethyl]trimethyl ammonium chloride) monolithic column. Electrophoresis 29:3875–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aggarwal P, Tolley HD, Lee ML (2012) Characterizing organic monolithic columns using capillary flow porometry and scanning electron microscopy. Anal Chem 84:247–254

    Article  CAS  PubMed  Google Scholar 

  56. Wouters S, Wouters B, Vaast A, Terryn H, Assche GV, Eeltink S (2014) Monitoring the morphology development of polymer-monolithic stationary phases by thermal analysis. J Sep Sci 37:179–186

    Article  CAS  PubMed  Google Scholar 

  57. Krstulovic AM, Colin H, Tchapla A, Guiochon G (1983) Effects of the bonded alkyl chain length on methylene selectivity in reversed-phase liquid chromatography. Chromatographia 17:228–230

    Article  CAS  Google Scholar 

  58. Nischang I, Tallarek U (2009) Inherent peak compression of charged analytes in electrochromatography. J Sep Sci 32:3157–3168

    Article  CAS  PubMed  Google Scholar 

  59. Al-Rimawi F, Pyell U (2007) Investigation of the ion-exchange properties of methacrylate-based mixed-mode monolithic stationary phases employed as stationary phases in capillary electrochromatography. J Chromatogr A 1160:326–335

    Article  CAS  PubMed  Google Scholar 

  60. Pyell U (2006) Theory of electrokinetic chromatography. In: Pyell U (ed) Electrokinetic chromatography: theory, instrumentation and applications. Wiley, Chichester

    Chapter  Google Scholar 

  61. Yang X, Dai J, Carr PW (2003) Analysis and critical comparison of the reversed-phase and ion-exchange contributions to retention on polybutadiene coated zirconia and octadecyl silane bonded silica phases. J Chromatogr A 996:13–31

    Article  CAS  PubMed  Google Scholar 

  62. Gritti F, Guiochon G (2015) Hydrophilic interaction chromatography: a promising alternative to reversed-phase liquid chromatography systems for the purification of small protonated bases. J Sep Sci 38:1633–1641

    Article  CAS  PubMed  Google Scholar 

  63. Currivan S, Macak JM, Jandera P (2015) Polymethacrylate monolithic columns for hydrophilic interaction liquid chromatography prepared using a secondary surface polymerization. J Chromatogr A 1402:82–93

    Article  CAS  PubMed  Google Scholar 

  64. Murauer A, Bakry R, Schottenberger H, Huck C, Ganzera M (2017) An innovative monolithic zwitterionic stationary phase for the separation of phenolic acids in coffee bean extracts by capillary electrochromatography. Anal Chim Acta 963:136–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li F, Qiu D, Kang J (2017) Preparation of a sulfoalkylbetaine-based zwitterionic monolith with enhanced hydrophilicity for capillary electrochromatography separation applications. Chromatographia 80:975–981

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. M. Hellwig (Electron Microscopy and Microanalysis Laboratory, University of Marburg, Marburg, Germany) for carrying out the SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to “Ayat Allah” Al-Massaedh.

Ethics declarations

Conflict of interest

A. A. Al-Massaedh declares that he has no conflict of interest. U. Pyell declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3857 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Massaedh, “., Pyell, U. Preparation of Cationic Mixed-Mode Acrylamide-Based Monolithic Stationary Phases for Capillary Electrochromatography. Chromatographia 81, 1325–1336 (2018). https://doi.org/10.1007/s10337-018-3564-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3564-7

Keywords

Navigation