Skip to main content
Log in

Organo-silica hybrid capillary monolithic column with mesoporous silica particles for separation of small aromatic molecules

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Monolithic stationary phases for use in capillary electrochromatography were prepared by incorporation of mesoporous silica particles (of type MCM-41 or UVM-7) in a polymer obtained from butyl methacrylate and ethylene glycol dimethacrylate as monomers, 1,4-butanediol and 1-propanol as porogen, and azobisisobutyronitrile as initiator. The stability of the dispersions with varying fractions of silica particles was investigated by UV-vis spectrometry. Using continuous stirring during the capillary filling and short UV-polymerization times, polymeric beds with homogenously dispersed mesoporous particles (with contents up to 35 wt% of silica) are obtained. The resulting hybrid monolithic columns were characterized using scanning electron microscopy. The chromatographic performance of these novel stationary phases was evaluated by using alkyl benzenes and benzoic acid derivatives as test analytes. The use of these polymers leads to increased retention and separation efficiency compared to the parent monolith. The column efficiency reached values of up to 140,000 plates m−1. The resulting hybrid monolithic columns also exhibited a satisfactory reproducibility with relative standard deviations of ca. 14% (batch-to-batch).

Hybrid polymer monoliths containing large amounts of mesoporous silica-particles (MCM-41 or UVM-7) were prepared by UV initiation. The prepared monolithic columns showed higher retention times and efficiencies than parent monoliths for alkyl benzenes and benzoic acid derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kresge KT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  2. Luque R, Balu AM, Campelo JM, Gracia MD, Losada E, Pineda A, Romero AA, Serrano-Ruiz JC (2012) Catalytic applications of mesoporous silica-based materials. Catalysis 24:253–280

    Article  CAS  Google Scholar 

  3. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605

    Article  CAS  Google Scholar 

  4. Walcarius A, Collinson MM (2009) Analytical chemistry with silica sol-gels: Traditional routes to new materials for chemical analysis. Annu Rev Anal Chem 2:121–143

    Article  CAS  Google Scholar 

  5. Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc Chem Res 40(9):846–853

    Article  CAS  Google Scholar 

  6. Zhao D, Sun J, Li Q, Stucky GD (2000) Morphological control of highly ordered mesoporous silica SBA-15. Chem Mater 12:275–279

    Article  CAS  Google Scholar 

  7. Rahmat N, Abdullah AZ, Mohamed AR (2010) A review: Mesoporous santa barbara amorphous-15, types, synthesis and its applications towards biorefinery production. Am J Appl Sci 7:1579–1586

    Article  CAS  Google Scholar 

  8. Gustafsson H, Thörn C, Holmberg K (2011) A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions. Colloids Surf. B Biointerfaces 15:464–471

    Article  Google Scholar 

  9. Cabrera S, El Haskouri J, Guillem C, Latorre J, Beltrán A, Beltrán D, Marcos MD, Amoros P (2000) Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sci 2(4):405–420

    Article  CAS  Google Scholar 

  10. El Haskouri J, Ortiz de Zárate D, Guillem C, Latorre J, Caldés M, Beltrán A, Beltrán D, Descalzo AB, Rodríguez G, Martínez-Mañez R, Marcos MD, Amorós P (2002) Silica-based powders and monoliths with bimodal pore systems. Chem Commun 4:330–331

    Article  Google Scholar 

  11. El Haskouri J, Morales JM, Ortiz de Zárate D, Fernandez L, Latorre J, Guillem C, Beltrán A, Beltrán D, Amorós P (2008) Nanoparticulated silicas with bimodal porosity: chemical control of the pore sizes. Inorg Chem 47(18):8267–8277

    Article  Google Scholar 

  12. Pérez-Cabero M, Hungría AB, Morales JM, Tortajada M, Ramón D, Moragues A, El Haskouri J, Beltrán A, Beltrán D, Amorós P (2012) Interconnected mesopores and high accessibility in UVM-7-like silicas. J Nanopart Res 14:1045–1048

    Article  Google Scholar 

  13. Ros-Lis JV, Casasús R, Comes M, Coll C, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P, El Haskouri J, Garró N, Rurack K (2008) A mesoporous 3D hybrid material with dual functionality for Hg2+ detection and adsorption. Chemistry 14(27):8267–8278

    Article  CAS  Google Scholar 

  14. Svec F (2012) Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. J Chromatogr A 1228:250–262

    Article  CAS  Google Scholar 

  15. Svec F, Lv Y (2015) Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem 87:250–273

  16. Chen X, Tolley HD, Lee ML (2011) Monolithic capillary columns synthesized from a single phosphate-containing dimethacrylate monomer for cation-exchange chromatography of peptides and proteins. J Chromatogr A 1218:4322–4331

    Article  CAS  Google Scholar 

  17. Tasfiyati AN, Iftitah ED, Sakti SP, Sabarudin A (2016) Evaluation of glycidyl methacrylate-based monolith functionalized with weak anion exchange moiety inside 0.5 mm i.d. column for liquid chromatographic separation of DNA. Anal Chem Res 7:9–16

    Article  CAS  Google Scholar 

  18. Lämmerhofer M, Gargano A (2010) Monoliths with chiral surface functionalization for enantioselective capillary electrochromatography. J Pharmaceut Biomed Anal 53:1091–1123

    Article  Google Scholar 

  19. Acquah C, Obeng EM, Agyei D, Ongkudon CM, Moy CKS, Danquah MK (2017) Nano-doped monolithic materials for molecular separation. Separations 4:2–22

    Article  Google Scholar 

  20. Navarro-Pascual-Ahuir M, Lucena R, Cárdenas S, Ramis-Ramos G, Valcárcel M, Herrero-Martínez JM (2014) UV-polymerized butyl methacrylate monoliths with embedded carboxylic single-walled carbon nanotubes for CEC applications. Anal Bioanal Chem 406:6329–6336

    Article  CAS  Google Scholar 

  21. Zhang LS, Gao SP, Huang YP, Liu ZS (2016) Green synthesis of polymer monoliths incorporated with carbon nanotubes in room temperature ionic liquid and deep eutectic solvents. Talanta 154:335–340

    Article  CAS  Google Scholar 

  22. Navarro-Pascual-Ahuir M, Lerma-García MJ, Ramis-Ramos G, Simó-Alfonso EF, Herrero-Martínez JM (2013) Preparation and evaluation of lauryl methacrylate monoliths with embedded silver nanoparticles for capillary electrochromatography. Electrophoresis 34:925–934

    Article  CAS  Google Scholar 

  23. Lei W, Zhang LY, Wan L, Shi BF, Wang YQ, Zhang WB (2012) Hybrid monolithic columns with nanoparticles incorporated for capillary electrochromatography. J Chromatogr A 1239:67–71

    Article  Google Scholar 

  24. Wan L, Zhang L, Lei W, Zhu Y, Zhang W, Wang Y (2012) Novel hybrid organic-inorganic monolithic column containing mesoporous nanoparticles for capillary electrochromatography. Talanta 98:277–281

    Article  CAS  Google Scholar 

  25. Liu Y, Chen Y, Yang H, Nie L, Yao S (2013) Cage-like silica nanoparticles-functionalized silica hybrid monolith for high performance capillary electrochromatography via "one-pot" process. J Chromatogr A 1283:132–139

    Article  CAS  Google Scholar 

  26. Serjeant EP, Dempsey B (1979) Ionization constants of organic acids in aqueous solution, Pergamon

  27. Peters EC, Petro M, Svec F, Fréchet JMJ (1998) Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. 1. Fine Control of Porous Properties and Surface Chemistry. Anal Chem 70:2288–2295

    Article  CAS  Google Scholar 

  28. Huang HY, Lin CL, Wu CY, Cheng YJ, Lin CH (2013) Metal organic framework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography. Anal Chim Acta 779:96–103

    Article  CAS  Google Scholar 

  29. Carrasco-Correa EJ, Ramis-Ramos G, Herrero-Martínez JM (2015) Hybrid methacrylate monolithic columns containing magnetic nanoparticles for capillary electrochromatography. J Chromatogr A 1385:77–84

    Article  CAS  Google Scholar 

  30. Jiang Z, Reilly J, Brian E, Smith NW (2009) Novel zwitterionic polyphosphorylcholine monolithic column for hydrophilic interaction chromatography. J Chromatogr A 1216:2439–2448

    Article  CAS  Google Scholar 

  31. Zhang L, Zhao Q, Li X, Li X, Huang Y, Liu Z (2016) Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents. Talanta 161:660–667

    Article  CAS  Google Scholar 

  32. Zhang L, Wang Z, Zhang W (2013) Sub-micrometer mesoporous SBA-15 silica rods as stationary phase for capillary electrochromatography separation. Chin. J. Chromatogr 31(4):335–341

    Article  Google Scholar 

  33. Liu S, Peng J, Liu Z, Liu Z, Zhang H, Wu R (2016) One-pot approach to prepare organo-silica hybrid capillary monolithic column with intact mesoporous silica particles as building block. Sci Rep 6:34718

    Article  CAS  Google Scholar 

  34. Wu C, Liang Y, Yang K, Min Y, Liang Z, Zhang L, Zhang Y (2016) Clickable periodic mesoporous organosilica monolith for highly efficient capillary chromatographic separation. Anal Chem 88:1521–1525

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by projects CTQ2014-52765-R and MAT2015-64139-C4-2-R (MINECO of Spain and Fondo Europeo de Desarrollo Regional, FEDER) and PROMETEO/2016/145 (Conselleria d’Educació, Investigació, Cultura i Esport, Generalitat Valenciana, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Herrero-Martínez.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weller, A., Carrasco-Correa, E.J., Belenguer-Sapiña, C. et al. Organo-silica hybrid capillary monolithic column with mesoporous silica particles for separation of small aromatic molecules. Microchim Acta 184, 3799–3808 (2017). https://doi.org/10.1007/s00604-017-2404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2404-z

Keywords

Navigation