Skip to main content
Log in

Silica-Based Phenyl and Octyl Bifunctional Imidazolium as a New Mixed-Mode Stationary Phase for Reversed-Phase and Anion-Exchange Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this study, octylbenzimidazolium-modified silica (BeImC8-Sil) was prepared by covalent attachment of 1-octylbenzimidazole to γ-chloropropyl silica. The synthesized materials were characterized by the elemental analysis, IR spectrum, and thermogravimetric analysis. Due to the introduction of phenyl and octyl groups on the quaternary imidazolium, the developed BeImC8-Sil column can function via both reversed-phase and anion-exchange retention mechanisms. The chromatographic properties of the synthesized material were investigated by the separations of polycyclic aromatic hydrocarbons, mono-substituted derivatives of benzene, anilines, and phenols, revealing the existence of multiple interactions, including hydrogen bonding, π–π stacking, electrostatic forces, and hydrophobic interactions in reversed-phase mode; inorganic and organic anions were also separated mainly through anion-exchange interaction. The proposed BeImC8-Sil is a promising mixed-mode stationary phase for the separation of complex samples in high-performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Snyder LR, Kirkland JJ, Dolan JW (2010) Introduction to modern liquid chromatography. Wiley, New Jersey

  2. Fekete S, Oláh E, Fekete J (2012) Fast liquid chromatography: the domination of core-shell and very fine particles. J Chromatogr A 1228:57–71

    Article  CAS  Google Scholar 

  3. Yang Y, Geng X (2011) Mixed-mode chromatography and its applications to biopolymers. J Chromatogr A 1218:8813–8825

    Article  CAS  Google Scholar 

  4. Mansour FR, Danielson ND (2013) Multimodal liquid chromatography of small molecules. Anal Methods 5:4955–4972

    Article  CAS  Google Scholar 

  5. Apfelthaler E, Bicker W, Lämmerhofer M, Sulyok M, Krska R, Lindner W, Schuhmacher R (2008) Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography–electrospray ionisation-tandem mass spectrometry. J Chromatogr A 1191:171–181

    Article  CAS  Google Scholar 

  6. Bicker W, Lämmerhofer M, Lindner W (2008) Mixed-mode stationary phases as a complementary selectivity concept in liquid chromatography–tandem mass spectrometry-based bioanalytical assays. Anal Bioanal Chem 390:263–266

    Article  CAS  Google Scholar 

  7. Dietrich MA, Adamek M, Bilińska B, Hejmej A, Steinhagen D, Ciereszko A (2011) Multi-modal applicability of a reversed-phase/weak-anion exchange material in reversed-phase, anion-exchange, ion-exclusion, hydrophilic interaction and hydrophobic interaction chromatography modes. Anal Bioanal Chem 400:2517–2530

    Article  Google Scholar 

  8. Kiseleva MG, Nesterenko PN (2000) Phenylaminopropyl silica—a new specific stationary phase for high-performance liquid chromatography of phenols. J Chromatogr A 898:23–34

    Article  CAS  Google Scholar 

  9. Kiseleva MG, Radchenko LV, Nesterenko PN (2001) Ion-exchange properties of hypercrosslinked polystyrene impregnated with methyl orange. J Chromatogr A 920:79–85

    Article  CAS  Google Scholar 

  10. Takeuchi T, Kawasaki T, Lim LW (2010) Separation of inorganic anions on a pyridine stationary phase in ion chromatography. Anal Sci 26:511–514

    Article  CAS  Google Scholar 

  11. Auler LMLA, Silva CR, Collins KE, Collins CH (2005) New stationary phase for anion-exchange chromatography. J Chromatogr A 1073:147–153

    Article  CAS  Google Scholar 

  12. Auler L, Silva CR, Bottoli C, Collins CH (2011) Anion separations for liquid chromatography using propylpyridinium silica as the stationary phase. Talanta 84:1174–1179

    Article  CAS  Google Scholar 

  13. Sun M, Feng J, Liu S, Xiong C (2011) Polydopamine supported preparation method for solid-phase microextraction coatings on stainless steel wire. J Chromatogr A 1218:3601–3607

    Article  Google Scholar 

  14. Muenter MM, Stokes KC, Obie RT, Jezorek JR (1999) Simultaneous separation of inorganic ions and neutral organics on ion-exchange stationary phases. J Chromatogr A 844:39–51

    Article  CAS  Google Scholar 

  15. Zhang M, Liang X, Jiang S, Qiu H (2014) Preparation and applications of surface-confined ionic-liquid stationary phases for liquid chromatography. TrAC Trends Anal Chem 53:60–72

    Article  CAS  Google Scholar 

  16. Qiu H, Jiang S, Liu X, Zhao L (2006) Novel imidazolium stationary phase for high-performance liquid chromatography. J Chromatogr A 1116:46–50

    Article  CAS  Google Scholar 

  17. Bi W, Zhou J, Row KH (2010) Separation of xylose and glucose on different silica-confined ionic liquid stationary phases. Anal Chim Acta 677:162–168

    Article  CAS  Google Scholar 

  18. Qian W, Baker GA, Baker SN, Colón LA (2006) Surface confined ionic liquid as a stationary phase for HPLC. Analyst 131:1000–1005

    Article  Google Scholar 

  19. Qiu H, Jiang Q, Wei Z, Wang X, Liu X, Jiang S (2007) Preparation and evaluation of a silica-based 1-alkyl-3-(propyl-3-sulfonate) imidazolium zwitterionic stationary phase for high-performance liquid chromatography. J Chromatogr A 1163:63–69

    Article  CAS  Google Scholar 

  20. Qiu H, Jiang Q, Liu X, Jiang S (2008) Comparison of anion-exchange and hydrophobic interactions between two new silica-based long-chain alkylimidazolium stationary phases for LC. Chromatographia 68(3–4):167–171

    Article  CAS  Google Scholar 

  21. Sun Y, Cabovska B, Evans CE, Ridgway TH, Stalcup AM (2005) Retention characteristics of a new butylimidazolium-based stationary phase. Anal Bioanal Chem 382:728–734

    Article  CAS  Google Scholar 

  22. Chitta KR, Meter DSV, Stalcup AM (2009) Separation of peptides by HPLC using a surface-confined ionic liquid stationary phase. Anal Bioanal Chem 396:775–781

    Article  Google Scholar 

  23. Meter DSV, Oliver NJ, Carle AB, Dehm S, Ridgway TH, Stalcup AM (2009) Characterization of surface-confined ionic liquid stationary phases: impact of cation and anion identity on retention. Anal Bioanal Chem 393:283–294

    Article  Google Scholar 

  24. Sun M, Feng J, Luo C, Liu X, Jiang S (2013) Benzimidazole modified silica as a novel reversed-phase and anion-exchange mixed-mode stationary phase for HPLC. Talanta 105:135–141

    Article  CAS  Google Scholar 

  25. Qiu H, Mallik AK, Takafuji M, Liu X, Jiang S, Ihara H (2012) A new imidazolium-embedded C18 stationary phase with enhanced performance in reversed-phase liquid chromatography. Anal Chim Acta 738:95–101

    Article  CAS  Google Scholar 

  26. Qiao X, Ye M, Xiang C, Wang Q, Liu CF, Miao WJ (2012) Analytical strategy to reveal the in vivo process of multi-component herbal medicine: a pharmacokinetic study of licorice using liquid chromatography coupled with triple quadrupole mass spectrometry. J Chromatogr A 1258:84–93

    Article  CAS  Google Scholar 

  27. Shannon MS, Hindman MS, Danielsen SPO, Tedstone JM, Gilmore RD, Bara JE (2012) Properties of alkylbenzimidazoles for CO2 and SO2 capture and comparisons to ionic liquids. Sci China Chem 55:1638–1647

    Article  CAS  Google Scholar 

  28. Kimata K, Iwaguchi K, Onishi S, Jinno K, Eksteen R, Hosoya K, Araki M, Tanaka N (1989) Chromatographic characterization of silica C18 packing materials. Correlation between a preparation method and retention behavior. of stationary phase. J Chromatogr Sci 27:721–728

    Article  CAS  Google Scholar 

  29. Tanaka N, Tokuda Y, Iwaguchi K, Araki M (1982) Effect of stationary phase structure on retention and selectivity in reversed-phase liquid chromatography. J Chromatogr A 239:761–772

    Article  CAS  Google Scholar 

  30. Horak J, Maier NM, Lindner W (2004) Investigations on the chromatographic behavior of hybrid reversed-phase materials containing electron donor-acceptor systems II. Contribution of π–π aromatic interactions. J Chromatogr A 1045:43–58

    Article  CAS  Google Scholar 

  31. Zhao Q, Wei F, Xiao N, Yu Q-W, Yuan B-F, Feng Y-Q (2012) Dispersive microextraction based on water-coated Fe3O4 followed by gas chromatography-mass spectrometry for determination of 3-monochloropropane-1,2-diol in edible oils. J Chromatogr A 1240:45–51

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to the support of the “Hundred Talents Program” of the Chinese Academy of Sciences, and the National Natural Science Foundation of China (No. 21275133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongdeng Qiu or Shusheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Zhao, W., Qiu, H. et al. Silica-Based Phenyl and Octyl Bifunctional Imidazolium as a New Mixed-Mode Stationary Phase for Reversed-Phase and Anion-Exchange Chromatography. Chromatographia 79, 1437–1443 (2016). https://doi.org/10.1007/s10337-016-3166-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3166-1

Keywords

Navigation