Skip to main content
Log in

Novel imidazolium-embedded N,N-dimethylaminopropyl-functionalized silica-based stationary phase for hydrophilic interaction/reversed-phase mixed-mode chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel imidazolium-embedded N,N-dimethylaminopropyl-functionalized silica-based stationary phase (Sil-ImCl) was prepared and further used for hydrophilic interaction/reversed-phase mixed-mode chromatography. The Sil-ImCl stationary phase was respectively characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, and element analysis. A variety of hydrophilic or hydrophobic compounds were used to evaluate the retention mechanisms of the developed stationary phase, and the effects of buffer salt concentration and pH of mobile phase on the retention of these compounds were also investigated. The developed stationary phase was successfully applied for separation of nucleosides and nucleic acid bases, water-soluble vitamins, phenols, and positional isomers. Moreover, simultaneous separation of polar and nonpolar compounds was also achieved with high resolution, outperforming the commercially available C8 column and amino column. Furthermore, the Sil-ImCl stationary phase has been successfully applied for separation of secondary metabolites of Hansfordia sinuosae. All these results demonstrate that the Sil-ImCl stationary phase might be promising for separation of complex polar and nonpolar compounds with high efficiency, especially in biological industry.

Novel imidazolium-embedded N,N-dimethylaminopropyl-functionalized silica-based stationary phase for HILIC/RPLC mixed-mode chromatography

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang S, Guo Q, Wang L, Lin L, Shi H, Cao H, Cao B (2015) Detection of honey adulteration with starch syrup by high performance liquid chromatography. Food Chem 172:669–674

    Article  CAS  Google Scholar 

  2. Ilisz I, Grecsó N, Fülöp F, Lindner W, Péter A (2015) High-performance liquid chromatographic enantioseparation of cationic 1,2,3,4-tetrahydroisoquinoline analogs on Cinchona alkaloid-based zwitterionic chiral stationary phases. Anal Bioanal Chem 407(3):961–972

    Article  CAS  Google Scholar 

  3. Shaaban H, Górecki T (2015) Current trends in green liquid chromatography for the analysis of pharmaceutically active compounds in the environmental water compartments. Talanta 132:739–752

    Article  CAS  Google Scholar 

  4. Yin W, Cheng L, Chai H, Guo R, Liu R, Chu C, Palasota JA, Cai X (2015) Silica-based 2-(N, N-dimethylamino)-1,3-propanediol hydrophilic interaction liquid chromatography stationary phase for separating cephalosporins and carbapenems. Anal Bioanal Chem 407(20):6217–6220

    Article  CAS  Google Scholar 

  5. Grimm SH, Höfner G, Wanner KT (2015) Development and validation of an LC-ESI-MS/MS method for the triple reuptake inhibitor indatraline enabling its quantification in MS binding assays. Anal Bioanal Chem 407(2):471–485

    Article  CAS  Google Scholar 

  6. Wu L, Takatsu A, Park SR, Yang B, Yang H, Kinumi T, Wang J, Bi J, Wang Y (2015) Development and co-validation of porcine insulin certified reference material by high-performance liquid chromatography-isotope dilution mass spectrometry. Anal Bioanal Chem 407(11):3125–3135

    Article  CAS  Google Scholar 

  7. Ji S, Zhang F, Wu S, Yang B, Liang X (2014) Facile preparation of polyvinyl alcohol coated SiO2 stationary phases for high performance liquid chromatography. Analyst 139(21):5594–5599

    Article  CAS  Google Scholar 

  8. Yang Y, Geng X (2011) Mixed-mode chromatography and its applications to biopolymers. J Chromatogr A 1218(49):8813–8825

    Article  CAS  Google Scholar 

  9. Gargano AF, Leek T, Lindner W, Lämmerhofer M (2013) Mixed-mode chromatography with zwitterionic phosphopeptidomimetic selectors from Ugi multicomponent reaction. J Chromatogr A 1317:12–21

    Article  CAS  Google Scholar 

  10. Hu K, Feng S, Wu M, Wang S, Zhao W, Jiang Q, Yu A, Zhang S (2014) Development of a V-shape bis(tetraoxacalix[2]arene[2]triazine) stationary phase for high performance liquid chromatography. Talanta 130:63–70

    Article  CAS  Google Scholar 

  11. Sun M, Qiu H, Wang L, Liu X, Jiang S (2009) Poly(1-allylimidazole)-grafted silica, a new specific stationary phase for reversed-phase and anion-exchange liquid chromatography. J Chromatogr A 1216(18):3904–3909

    Article  CAS  Google Scholar 

  12. Sun M, Feng J, Luo C, Liu X, Jiang S (2013) Benzimidazole modified silica as a novel reversed-phase and anion-exchange mixed-mode stationary phase for HPLC. Talanta 105:135–141

    Article  CAS  Google Scholar 

  13. Sun M, Feng J, Liu S, Xiong C, Liu X, Jiang S (2011) Dipyridine modified silica--a novel multi-interaction stationary phase for high performance liquid chromatography. J Chromatogr A 1218(24):3743–3749

    Article  CAS  Google Scholar 

  14. Zimmermann A, Greco R, Walker I, Horak J, Cavazzini A, Lämmerhofer M (2014) Synthetic oligonucleotide separations by mixed-mode reversed-phase/weak anion-exchange liquid chromatography. J Chromatogr A 1354:43–55

    Article  CAS  Google Scholar 

  15. Yang F, Bai Q, Zhao K, Gao D, Tian L (2015) Preparation of a novel weak cation exchange/hydrophobic interaction chromatography dual-function polymer-based stationary phase for protein separation using “thiol-ene click chemistry”. Anal Bioanal Chem 407(6):1721–1734

    Article  CAS  Google Scholar 

  16. Shen G, Zhang F, Yang B, Chu C, Liang X (2013) A novel amide stationary phase for hydrophilic interaction liquid chromatography and ion chromatography. Talanta 115:129–132

    Article  CAS  Google Scholar 

  17. Qiao L, Wang S, Li H, Shan Y, Dou A, Shi X, Xu G (2014) A novel surface-confined glucaminium-based ionic liquid stationary phase for hydrophilic interaction/anion-exchange mixed-mode chromatography. J Chromatogr A 1360:240–247

    Article  CAS  Google Scholar 

  18. Liu Y, Du Q, Yang B, Zhang F, Chu C, Liang X (2012) Silica based click amino stationary phase for ion chromatography and hydrophilic interaction liquid chromatography. Analyst 137(7):1624–1628

    Article  CAS  Google Scholar 

  19. Shen A, Li X, Dong X, Wei J, Guo Z, Liang X (2013) Glutathione-based zwitterionic stationary phase for hydrophilic interaction/cation-exchange mixed-mode chromatography. J Chromatogr A 1314:63–69

    Article  CAS  Google Scholar 

  20. Sun M, Feng J, Luo C, Liu X, Jiang S (2014) Quinolinium ionic liquid-modified silica as a novel stationary phase for high-performance liquid chromatography. Anal Bioanal Chem 406(11):2651–2658

    Article  CAS  Google Scholar 

  21. Qiu H, Mallik AK, Takafuji M, Jiang S, Ihara H (2012) New poly(ionic liquid)-grafted silica multi-mode stationary phase for anion-exchange/reversed-phase/hydrophilic interaction liquid chromatography. Analyst 137(11):2553–2555

    Article  CAS  Google Scholar 

  22. Li Y, Yang J, Jin J, Sun X, Wang L, Chen J (2014) New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica. J Chromatogr A 1337:133–139

    Article  CAS  Google Scholar 

  23. Lu J, Zhang W, Zhang Y, Zhao W, Hu K, Yu A, Liu P, Wu Y, Zhang S (2014) A new stationary phase for high performance liquid chromatography: calix[4]arene derivatized chitosan bonded silica gel. J Chromatogr A 1350:61–67

    Article  CAS  Google Scholar 

  24. Qiu H, Zhang M, Gu T, Takafuji M, Ihara H (2013) A sulfonic-azobenzene-grafted silica amphiphilic material: a versatile stationary phase for mixed-mode chromatography. Chem Eur J 19(52):18004–18010

    Article  CAS  Google Scholar 

  25. Iverson CD, Lucy CA (2014) Aniline-modified porous graphitic carbon for hydrophilic interaction and attenuated reverse phase liquid chromatography. J Chromatogr A 1373:17–24

    Article  CAS  Google Scholar 

  26. Aral T, Aral H, Ziyadanoğulları B, Ziyadanoğulları R (2015) Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Talanta 131:64–73

    Article  CAS  Google Scholar 

  27. Cheng XD, Peng XT, Yu QW, Yuan BF, Feng YQ (2013) Preparation and chromatographic evaluation of a novel phosphate ester-bonded stationary phase with complexation and hydrophobic interactions retention mechanism. J Chromatogr A 1302:81–87

    Article  CAS  Google Scholar 

  28. Ohyama K, Inoue Y, Kishikawa N, Kuroda N (2014) Preparation and characterization of surfactin-modified silica stationary phase for reversed-phase and hydrophilic interaction liquid chromatography. J Chromatogr A 1371:257–260

    Article  CAS  Google Scholar 

  29. Voicu V, Sârbu C, Tache F, Micăle F, Rădulescu ŞF, Sakurada K, Ohta H, Medvedovici A (2014) Lipophilicity indices derived from the liquid chromatographic behavior observed under bimodal retention conditions (reversed phase/hydrophilic interaction): application to a representative set of pyridinium oximes. Talanta 122:172–179

    Article  CAS  Google Scholar 

  30. Li Y, Feng Y, Chen T, Zhang H (2011) Imidazoline type stationary phase for hydrophilic interaction chromatography and reversed-phase liquid chromatography. J Chromatogr A 1218(35):5987–5994

    Article  CAS  Google Scholar 

  31. Qiao X, Zhang L, Zhang N, Wang X, Qin X, Yan H, Liu H (2015) Imidazolium embedded C8 based stationary phase for simultaneous reversed-phase/hydrophilic interaction mixed-mode chromatography. J Chromatogr A 1400:107–116

    Article  CAS  Google Scholar 

  32. Qiao L, Dou A, Shi X, Li H, Shan Y, Lu X, Xu G (2013) Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography. J Chromatogr A 1286:137–145

    Article  CAS  Google Scholar 

  33. Jovanović M, Stojanović BJ (2013) Thorough investigation of the retention mechanisms and retention behavior of amides and sulfonamides on amino column in hydrophilic interaction liquid chromatography. J Chromatogr A 1301:27–37

    Article  Google Scholar 

  34. Shen A, Guo Z, Yu L, Cao L, Liang X (2011) A novel zwitterionic HILIC stationary phase based on “thiol-ene” click chemistry between cysteine and vinyl silica. Chem Commun 47(15):4550–4552

    Article  CAS  Google Scholar 

  35. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Anal Bioanal Chem 402(1):231–247

    Article  CAS  Google Scholar 

  36. Liang T, Fu Q, Shen A, Wang H, Jin Y, Xin H, Ke Y, Guo Z, Liang X (2015) Preparation and chromatographic evaluation of a newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography. J Chromatogr A 1388:110–118

    Article  CAS  Google Scholar 

  37. Qiu H, Wanigasekara E, Zhang Y, Tran T, Armstrong DW (2011) Development and evaluation of new zwitterionic hydrophilic interaction liquid chromatography stationary phases based on 3-P, P-diphenylphosphonium-propylsulfonate. J Chromatogr A 1218(44):8075–8082

    Article  CAS  Google Scholar 

  38. Shen A, Guo Z, Cai X, Xue X, Liang X (2012) Preparation and chromatographic evaluation of a cysteine-bonded zwitterionic hydrophilic interaction liquid chromatography stationary phase. J Chromatogr A 1228:175–182

    Article  CAS  Google Scholar 

  39. Sheng Q, Su X, Li X, Ke Y, Liang X (2014) A dextran-bonded stationary phase for saccharide separation. J Chromatogr A 1345:57–67

    Article  CAS  Google Scholar 

  40. Qiao X, Wang R, Li G, Yan H, Zhou Y, Zhang L, Zhang Y (2014) Imidazolium-based iodoacetamide functional tags: design, synthesis, and property study for cysteinyl-peptide analysis by mass spectrometry. Analyst 139(4):705–708

    Article  CAS  Google Scholar 

  41. Liu S, Qiao X, Yang Y, Yan H (2014) Novel imidazolium-embedded amine stationary phase: preparation and its performance for hydrophilic interaction chromatography. Chin J Chromatogr 32(10):1079–1083

    CAS  Google Scholar 

  42. Wu Z, Liu D, Proksch P, Guo P, Lin W (2014) Punctaporonins H-M: caryophyllene-type sesquiterpenoids from the sponge-associated fungus Hansfordia sinuosae. Mar Drugs 12(7):3904–3916

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from National Natural Science Foundation of China (21205027), Natural Science Foundation of Hebei Province (B2015201016), the Young Talent Program in College and University of Hebei Province (BJ2014005), and Natural Science Foundation of Hebei University (2011–225).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xu, H., Yu, J. et al. Novel imidazolium-embedded N,N-dimethylaminopropyl-functionalized silica-based stationary phase for hydrophilic interaction/reversed-phase mixed-mode chromatography. Anal Bioanal Chem 407, 8989–8997 (2015). https://doi.org/10.1007/s00216-015-9064-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9064-9

Keywords

Navigation