Skip to main content
Log in

Multi-modal applicability of a reversed-phase/weak-anion exchange material in reversed-phase, anion-exchange, ion-exclusion, hydrophilic interaction and hydrophobic interaction chromatography modes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.

A silica-based material functionalized with alkyl-strands having polar embedded groups and terminal anion-exchange site provides exceptional operational flexibility and can be used in reversed-phase, anion-exchange, ionexclusion, hydrophilic interaction and hydrophobic interaction chromatography as well as mix-modes thereof

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AEX:

Anion-exchange

HIC:

Hydrophobic interaction chromatography

HILIC:

Hydrophilic interaction chromatography

IEC:

Ion-exclusion chromatography

IEX:

Ion-exchange

LSS:

Linear solvent strength (theory)

RPLC:

Reversed-phase liquid chromatography

RP/WAX:

Mixed-mode reversed-phase/weak anion-exchange material

References

  1. Majors RE (2010) New chromatography columns and accessories at Pittcon 2010: part I. LCGC North Am 28:192–210

    CAS  Google Scholar 

  2. Jandera P (2000) Comparison of various modes and phase systems for analytical HPLC. In: Valko K (ed) Separation methods in drug synthesis and purification. Elsevier, Amsterdam, pp 1–71

    Chapter  Google Scholar 

  3. Hemstroem P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29:1784–1821

    Article  CAS  Google Scholar 

  4. Hagestam IH, Pinkerton TC (1985) Internal surface reversed-phase silica supports for liquid chromatography. Anal Chem 57:1757–1763

    Article  CAS  Google Scholar 

  5. Vielhauer S, Rudolphi A, Boos K-S, Seidel D (1995) Evaluation and routine application of the novel restricted-access precolumn packing material alkyl-diol silica: coupled-column high-performance liquid chromatographic analysis of the photoreactive drug 8-methoxypsoralen in plasma. J Chromatogr B 666:315–322

    Article  CAS  Google Scholar 

  6. Rbeida O, Christiaens B, Chiap P et al (2003) Fully automated LC method for the determination of sotalol in human plasma using restricted access material with cation exchange properties for sample clean-up. J Pharm Biomed Anal 32:829–838

    Article  CAS  Google Scholar 

  7. Liu X, Pohl C (2008) New hydrophilic interaction/reversed-phase mixed-mode stationary phase and its application for analysis of nonionic ethoxylated surfactants. J Chromatogr A 1191:83–89

    Article  CAS  Google Scholar 

  8. Jandera P, Urban J, Skerikova V, Langmaier P, Kubickova R, Planeta J (2010) Polymethacrylate monolithic and hybrid particle-monolithic columns for reversed-phase and hydrophilic interaction capillary liquid chromatography. J Chromatogr A 1217:22–33

    Article  CAS  Google Scholar 

  9. Urban J, Skerikova V, Jandera P, Kubickova R, Pospisilova M (2009) Preparation and characterization of polymethacrylate monolithic capillary columns with dual hydrophilic interaction reversed-phase retention mechanism for polar compounds. J Sep Sci 32:2530–2543

    Article  CAS  Google Scholar 

  10. Liao JC, Vogt CR (1979) Bonded reverse phase ion exchange columns for the liquid chromatographic separations of neutral and ionic organic compounds. J Chromatogr Sci 17:237–244

    Article  CAS  Google Scholar 

  11. Bischoff R, McLaughlin LW (1983) Chemically synthesized hydrophobic anion-exchange high-performance liquid chromatography supports used for oligonucleotide resolution by mixed mode chromatography. J Chromatogr 270:117–126

    Article  CAS  Google Scholar 

  12. Danielson ND, Wangsa J, Shamsi SA (1995) Synthesis and characterization of a polymeric fluorocarbon-diamine reversed phase weak anion exchange silica HPLC column packing. J Liq Chromatogr 18:2579–2592

    Article  CAS  Google Scholar 

  13. Huang P, Jin X, Chen Y, Srinivasan JR, Lubman DM (1999) Use of a mixed-mode packing and voltage tuning for peptide mixture separation in pressurized capillary electrochromatography with an ion trap storage/reflectron time-of-flight mass spectrometer detector. Anal Chem 71:1786–1791

    Article  CAS  Google Scholar 

  14. Klampfl CW, Hilder EF, Haddad PR (2000) Investigations on the behaviour of acidic, basic and neutral compounds in capillary electrochromatography on a mixed-mode stationary phase. J Chromatogr A 888:267–274

    Article  CAS  Google Scholar 

  15. Scherer B, Steiner F (2001) Application of hydrophobic anion-exchange phases in capillary electrochromatography. J Chromatogr A 924:197–209

    Article  CAS  Google Scholar 

  16. Nogueira R, Laemmerhofer M, Lindner W (2005) Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase. J Chromatogr A 1089:158–169

    Article  CAS  Google Scholar 

  17. Sun L, Carr PW (1995) Mixed-mode retention of peptides on phosphate-modified polybutadiene-coated zirconia. Anal Chem 67:2517–2523

    Article  CAS  Google Scholar 

  18. Walshe M, Kelly MT, Smyth MR, Ritchie H (1995) Retention studies on mixed-mode columns in high-performance liquid chromatography. J Chromatogr A 708:31–40

    Article  CAS  Google Scholar 

  19. Spikmans V, Lane SJ, Tjaden UR, Van Der Greef J (1999) Automated capillary electrochromatography tandem mass spectrometry using mixed mode reversed-phase ion-exchange chromatography columns. Rapid Comun Mass Spec 13:141–149

    Article  CAS  Google Scholar 

  20. Adam T, Ludtke S, Unger KK (1999) Packing and stationary phase design for capillary electroendosmotic chromatography. Chromatographia 49:S49–S55

    Article  CAS  Google Scholar 

  21. Hu Y, Yang X, Carr PW (2002) Mixed-mode reversed-phase and ion-exchange separations of cationic analytes on polybutadiene-coated zirconia. J Chromatogr A 968:17–29

    Article  CAS  Google Scholar 

  22. Liu X, Pohl C (2009) A weak cation-exchange, reversed-phase mixed-mode HPLC column and its applications. Am Lab (Shelton, CT, US) 41(26):28–29

    Google Scholar 

  23. Matyska MT, Pesek JJ, Duley J, Zamzami M, Fischer SM (2010) Aqueous normal phase retention of nucleotides on silica hydride-based columns: method development strategies for analytes relevant in clinical analysis. J Sep Sci 33:930–938

    Article  CAS  Google Scholar 

  24. Zhang Y, Carr PW (2011) Novel ultra stable silica-based stationary phases for reversed phase liquid chromatography—study of a hydrophobically assisted weak acid cation exchange phase. J Chromatogr A 1218:763–777

    Article  CAS  Google Scholar 

  25. Zhu BY, Mant CT, Hodges RS (1992) Mixed-mode hydrophilic and ionic interaction chromatography rivals reversed-phase liquid chromatography for the separation of peptides. J Chromatogr 594:75–86

    Article  CAS  Google Scholar 

  26. Mant CT, Hodges RS (2008) Mixed-mode hydrophilic interaction/cation-exchange chromatography (HILIC/CEX) of peptides and proteins. J Sep Sci 31:2754–2773

    Article  CAS  Google Scholar 

  27. Mant CT, Hodges RS (2008) Mixed-mode hydrophilic interaction/cation-exchange chromatography: separation of complex mixtures of peptides of varying charge and hydrophobicity. J Sep Sci 31:1573–1584

    Article  CAS  Google Scholar 

  28. Liu X, Pohl CA (2010) HILIC behavior of a reversed-phase/cation-exchange/anion-exchange trimode column. J Sep Sci 33:779–786

    Article  CAS  Google Scholar 

  29. Fontanals N, Marce RM, Borrull F, Cormack PAG (2010) Mixed-mode ion-exchange polymeric sorbents: dual-phase materials that improve selectivity and capacity. TrAC, Trends Anal Chem 29:765–779

    Article  CAS  Google Scholar 

  30. Smith N, Evans MB (1999) Comparison of the electroosmotic flow profiles and selectivity of stationary phases used in capillary electrochromatography. J Chromatogr A 832:41–54

    Article  CAS  Google Scholar 

  31. Ohyama K, Kuroda N (2009) Novel mixed-mode stationary phase for capillary electrochromatography. Adv Chromatogr (Boca Raton, FL, US) 47:127–163

    CAS  Google Scholar 

  32. McLaughlin LW (1989) Mixed-mode chromatography of nucleic acids. Chem Rev (Washington, DC, US) 89:309–319

    CAS  Google Scholar 

  33. Bicker W, Laemmerhofer M, Lindner W (2005) Determination of chlorpyrifos metabolites in human urine by reversed-phase/weak anion exchange liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr B 822:160–169

    Article  CAS  Google Scholar 

  34. Bicker W, Laemmerhofer M, Lindner W (2008) Mixed-mode stationary phases as a complementary selectivity concept in liquid chromatography-tandem mass spectrometry-based bioanalytical assays. Anal Bioanal Chem 390:263–266

    Article  CAS  Google Scholar 

  35. Apfelthaler E, Bicker W, Laemmerhofer M et al (2008) Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry. J Chromatogr A 1191:171–181

    Article  CAS  Google Scholar 

  36. Hinterwirth H, Laemmerhofer M, Preinerstorfer B et al (2010) Selectivity issues in targeted metabolomics: separation of phosphorylated carbohydrate isomers by mixed-mode hydrophilic interaction/weak anion exchange chromatography. J Sep Sci 33:3273–3282

    Article  CAS  Google Scholar 

  37. Progent F, Taverna M, Banco A, Tchapla A, Smadja C (2006) Chromatographic behaviour of peptides on a mixed-mode stationary phase with an embedded charged group by capillary electrochromatography and high-performance liquid chromatography. J Chromatogr A 1136:221–225

    Article  CAS  Google Scholar 

  38. Abbood A, Smadja C, Herrenknecht C, Alahmad Y, Tchapla A, Taverna M (2009) Retention mechanism of peptides on a stationary phase embedded with a quaternary ammonium group: a liquid chromatography study. J Chromatogr A 1216:3244–3251

    Article  CAS  Google Scholar 

  39. Abbood A, Smadja C, Taverna M, Herrenknecht C (2010) High performance liquid chromatography separation of structurally related enkephalins on quaternary ammonium-embedded stationary phase in isocratic mode. J Chromatogr A 1217:450–458

    Article  CAS  Google Scholar 

  40. Zhang K, Dai L, Chetwyn NP (2010) Simultaneous determination of positive and negative pharmaceutical counterions using mixed-mode chromatography coupled with charged aerosol detector. J Chromatogr A 1217:5776–5784

    Article  CAS  Google Scholar 

  41. McCallum JL, Yang R, Young JC, Strommer JN, Tsao R (2007) Improved high performance liquid chromatographic separation of anthocyanin compounds from grapes using a novel mixed-mode ion-exchange reversed-phase column. J Chromatogr A 1148:38–45

    Article  CAS  Google Scholar 

  42. Vergara C, Mardones C, Hermosin-Gutierrez I, von Baer D (2010) Comparison of high-performance liquid chromatography separation of red wine anthocyanins on a mixed-mode ion-exchange reversed-phase and on a reversed-phase column. J Chromatogr A 1217:5710–5717

    Article  CAS  Google Scholar 

  43. Venkatramani CJ, Zelechonok Y (2005) Two-dimensional liquid chromatography with mixed mode stationary phases. J Chromatogr A 1066:47–53

    Article  CAS  Google Scholar 

  44. Phillips HL, Williamson JC, van Elburg KA, Snijders APL, Wright PC, Dickman MJ (2010) Shotgun proteome analysis utilising mixed mode (reversed phase-anion exchange chromatography) in conjunction with reversed phase liquid chromatography mass spectrometry analysis. Proteomics 10:2950–2960

    Article  CAS  Google Scholar 

  45. Igawa N, Kitagawa S, Ohtani H (2009) Simultaneous separation of anionic, cationic, and neutral components in capillary liquid chromatography using mixed-bed column of hydrophilic and anion-exchange stationary phases. J Sep Sci 32:359–363

    Article  CAS  Google Scholar 

  46. Lara-Martin PA, Gomez-Parra A, Gonzalez-Mazo E (2006) Development of a method for the simultaneous analysis of anionic and non-ionic surfactants and their carboxylated metabolites in environmental samples by mixed-mode liquid chromatography-mass spectrometry. J Chromatogr A 1137:188–197

    Article  CAS  Google Scholar 

  47. Hsieh Y, Duncan CJG, Liu M (2007) A mixed-mode liquid chromatography-tandem mass spectrometric method for the determination of cytarabine in mouse plasma. J Chromatogr B Anal Technol Biomed Life Sci 854:8–12

    Article  CAS  Google Scholar 

  48. Davies NH, Euerby MR, McCalley DV (2007) A study of retention and overloading of basic compounds with mixed-mode reversed-phase/cation-exchange columns in high performance liquid chromatography. J Chromatogr A 1138:65–72

    Article  CAS  Google Scholar 

  49. Oehme F, Peters J (2010) Mixed-mode chromatography in downstream process development. BioPharm International: 12–19

  50. Zhao G, Dong X-Y, Sun Y (2009) Ligands for mixed-mode protein chromatography: principles, characteristics and design. J Biotechnol 144:3–11

    Article  CAS  Google Scholar 

  51. Ranjini SS, Bimal D, Dhivya AP, Vijayalakshmi MA (2010) Study of the mechanism of interaction of antibody (IgG) on two mixed mode sorbents. J Chromatogr B 878:1031–1037

    Article  CAS  Google Scholar 

  52. Voitl A, Mueller-Spaeth T, Morbidelli M (2010) Application of mixed mode resins for the purification of antibodies. J Chromatogr A 1217:5753–5760

    Article  CAS  Google Scholar 

  53. Gatschelhofer C, Mautner A, Reiter F, Pieber TR, Buchmeiser MR, Sinner FM (2009) Ring-opening metathesis polymerization for the preparation of norbornene-based weak cation-exchange monolithic capillary columns. J Chromatogr A 1216:2651–2657

    Article  CAS  Google Scholar 

  54. Guerrouache M, Pantazaki A, Millot M-C, Carbonnier B (2010) Zwitterionic polymeric monoliths for HILIC/RP mixed mode for CEC separation applications. J Sep Sci 33:787–792

    Article  CAS  Google Scholar 

  55. Nogueira R, Lubda D, Leitner A et al (2006) Silica-based monolithic columns with mixed-mode reversed-phase/weak anion-exchange selectivity principle for high-performance liquid chromatography. J Sep Sci 29:966–978

    Article  CAS  Google Scholar 

  56. Laemmerhofer M, Richter M, Wu J, Nogueira R, Bicker W, Lindner W (2008) Mixed-mode ion-exchangers and their comparative chromatographic characterization in reversed-phase and hydrophilic interaction chromatography elution modes. J Sep Sci 31:2572–2588

    Article  CAS  Google Scholar 

  57. Gritti F, Gotmar G, Stanley BJ, Guiochon G (2003) Determination of single component isotherms and affinity energy distribution by chromatography. J Chromatogr A 988:185–203

    Article  CAS  Google Scholar 

  58. Samuelsson J, Arnell R, Fornstedt T (2009) Potential of adsorption isotherm measurements for closer elucidating of binding in chiral liquid chromatographic phase systems. J Sep Sci 32:1491–1506

    Article  CAS  Google Scholar 

  59. Fornstedt T (2010) Characterization of adsorption processes in analytical liquid-solid chromatography. J Chromatogr A 1217:792–812

    Article  CAS  Google Scholar 

  60. Gritti F, Guiochon G (2006) Heterogeneity of the adsorption mechanism of low molecular weight compounds in reversed-phase liquid chromatography. Anal Chem 78:5823–5834

    Article  CAS  Google Scholar 

  61. Bicker W, Laemmerhofer M, Keller T, Schuhmacher R, Krska R, Lindner W (2006) Validated method for the determination of the ethanol consumption markers ethyl glucuronide, ethyl phosphate, and ethyl sulfate in human urine by reversed-phase/weak anion exchange liquid chromatography-tandem mass spectrometry. Anal Chem 78:5884–5892

    Article  CAS  Google Scholar 

  62. Kopaciewicz W, Rounds MA, Fausnaugh F, Regnier FE (1983) Retention model for high-performance ion-exchange chromatography. J Chromatogr 266:3–21

    Article  CAS  Google Scholar 

  63. Millot M-C, Debranche T, Pantazaki A, Gherghi I, Sebille B, Vidal-Madjar C (2003) Ion-exchange chromatographic supports obtained by formation of polyelectrolyte multi-layers for the separation of proteins. Chromatographia 58:365–373

    CAS  Google Scholar 

  64. Stahlberg J (1999) Retention models for ions in chromatography. J Chromatogr A 855:3–55

    Article  CAS  Google Scholar 

  65. Alpert AJ (2008) Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem 80:62–76

    Article  CAS  Google Scholar 

  66. Ng KL, Glód BK, Dicinoski GW, Haddad PR (2001) Retention modelling of electrostatic and adsorption effects of aliphatic and aromatic carboxylic acids in ion-exclusion chromatography: II. Calculations of adsorption coefficients in unbuffered eluents. J Chromatogr A 920:41–49

    Article  CAS  Google Scholar 

  67. Ruta J, Rudaz S, McCalley DV, Veuthey J-L, Guillarme D (2010) A systematic investigation of the effect of sample diluent on peak shape in hydrophilic interaction liquid chromatography. J Chromatogr A 1217:8230–8240

    Article  CAS  Google Scholar 

  68. Yoshida T (2004) Peptide separation by hydrophilic-interaction chromatography: a review. J Biochem Biophys Meth 60:265–280

    Article  CAS  Google Scholar 

  69. Jennissen HP (2002) Hydrophobic interaction chromatography. Nature encyclopedia of life sciences, vol 9. Nature, London, pp 353–361

    Google Scholar 

  70. Burton SC, Harding DRK (1998) Hydrophobic charge induction chromatography: salt independent protein adsorption and facile elution with aqueous buffers. J Chromatogr A 814:71–81

    Article  CAS  Google Scholar 

  71. Jandera P (2008) Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts. J Sep Sci 31:1421–1437

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Christian-Doppler Research Society and the industry partners piCHEM (Graz, Austria), Merck KGaA (Darmstadt, Germany), Sandoz (Kundl, Austria), Fresenius Kabi Austria (Graz, Austria), and AstraZeneca (Mölndal, Sweden) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lämmerhofer.

Additional information

Published in the special issue Analytical Sciences in Austria with Guest Editors G. Allmaier W. Buchberger, and K. Francesconi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Electronic Supplementary Material (PDF 563 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lämmerhofer, M., Nogueira, R. & Lindner, W. Multi-modal applicability of a reversed-phase/weak-anion exchange material in reversed-phase, anion-exchange, ion-exclusion, hydrophilic interaction and hydrophobic interaction chromatography modes. Anal Bioanal Chem 400, 2517–2530 (2011). https://doi.org/10.1007/s00216-011-4755-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4755-3

Keywords

Navigation