Skip to main content
Log in

A Novel SPME Fiber Chemically Linked with 1-Vinyl-3-hexadecylimidazolium hexafluorophosphate Ionic Liquid Coupled with GC for the Simultaneous Determination of Pyrethroids in Vegetables

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A solid-phase microextraction (SPME) fiber chemically linked with ionic liquid (IL), coupled to gas chromatography–electron capture detector (GC–ECD) technique for the simultaneous sampling and determination of pyrethroids has been developed. A novel ionic liquid, 1-vinyl-3-hexadecylimidazolium hexafluorophosphate (ViHDIm+PF6 ), was synthesized and used as SPME fiber material. The IL-linked fiber was applied to the determination of seven pyrethroids in vegetables by direct immersion extraction, followed by gas chromatographic separation and electron capture detection. Important extraction parameters, including extraction temperature, extraction time, stirring rate, desorption temperature and time were carefully optimized. Several experiments were carried out to evaluate the analytical characteristics of the SPME–GC–ECD method under optimum conditions. The limits of detection (LODs) for the seven pyrethroids were between 0.07 and 0.29 μg L−1. The linearity was from 0.1 to 100 μg L−1 for fenpropathrin, from 0.25 to 100 μg L−1 for cypermethrin, permethrin and deltamethrin, and from 0.5 to 100 μg L−1 for flucythrinate, fenvalerate and fluvalinate. Single fiber and fiber-to-fiber reproducibility, expressed as relative standard deviation, were less than 8.10 and 13.27 %, respectively. Compared with the commercial polydimethyl siloxane (PDMS) fiber, the extraction efficiency of the prepared IL-linked fiber for seven pyrethroids was about 20 % higher than that of PDMS fiber. The established SPME–GC–ECD was successfully applied in the detection of pyrethroids in cabbage and cucumber, with LODs of the seven pyrethroids between 0.21 and 0.49 μg kg−1 and recoveries of between 67.40 and 90.38 % in vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bondarenko S, Spurlock F, Gan J (2007) Environ Toxicol Chem 26:2587–2593

    Article  CAS  Google Scholar 

  2. Hunter W, Yang Y, Reichenberg F, Mayer P, Gan J (2009) Environ Toxicol Chem 28:36–43

    Article  CAS  Google Scholar 

  3. Fernandez-Alvarez M, Llompart M, Lamas JP, Lores M, Garcia-Jares C, Cela R, Dagnac T (2008) J Chromatogr A 1188:154–163

    Article  CAS  Google Scholar 

  4. Menezes A, dos Santos FN, Pereira PAP (2010) Talanta 81:346–354

    Article  Google Scholar 

  5. Zhou QX, Zhang XG, Xie GH (2011) Anal Methods 3:356–361

    Article  CAS  Google Scholar 

  6. Boonchiangma S, Ngeontae W, Srijaranai S (2012) Talanta 88:209–215

    Article  CAS  Google Scholar 

  7. Ye FG, Xie ZG, Wu XP, Lin XC (2006) Talanta 69:97–102

    Article  CAS  Google Scholar 

  8. Kong Y, Zhang Q, Zhang W, Gee SJ, Li PW (2010) J Agric Food Chem 58:8189–8195

    Article  CAS  Google Scholar 

  9. Shi HY, Zhang BH, Ye YH, Zheng ZT, Wang MH (2011) Food Agric Immunol 22:69–76

    Article  CAS  Google Scholar 

  10. Shen CY, Cao XW, Shen WJ, Jiang Y, Zhao ZY, Wu B, Yu KY, Liu H, Lian HZ (2011) Talanta 84:141–147

    Article  CAS  Google Scholar 

  11. Feo ML, Eljarrat E, Barcelo D (2011) Rapid Commun Mass Spectr 25:869–876

    Article  CAS  Google Scholar 

  12. Hunter RE, Riederer AM, Ryan PB (2010) J Agric Food Chem 58:1396–1402

    Article  CAS  Google Scholar 

  13. Shi XZ, Liu JH, Sun AL, Li DX, Chen J (2011) J Chromatogr A 1227:60–65

    Google Scholar 

  14. Zhou QX, Gao YY, Bai HH, Xie GH (2010) J Chromatogr A 1217:5021–5025

    Article  CAS  Google Scholar 

  15. Wu J, Lu JA, Wilson C (2010) J Chromatogr A 1217:6327–6333

    Article  CAS  Google Scholar 

  16. Li HP, Lin CH, Jen JF (2009) Talanta 79:466–471

    Article  CAS  Google Scholar 

  17. Amvrazi EG, Albanis TA (2006) J Agric Food Chem 54:9642–9651

    Article  CAS  Google Scholar 

  18. Zhang X, Cai JB, Oakes KD, Breton F, Servos MR, Pawliszyn J (2009) Anal Chem 81:7349–7356

    Article  CAS  Google Scholar 

  19. Hashemi P, Shamizadeh M, Badiei A, Poor PZ, Ghiasvand AR, Ghiasvand A (2009) Anal Chim Acta 646:1–5

    Article  CAS  Google Scholar 

  20. Wong JW, Zhang K, Tech K, Hayward DG, Makovi CM, Krynitsky AJ, Schenck FJ, Banerjee K, Dasgupta S, Brown D (2010) J Agric Food Chem 58:5868–5883

    Article  CAS  Google Scholar 

  21. Sakamoto M, Tsutsumi T (2004) J Chromatogr A 1028:63–74

    Article  CAS  Google Scholar 

  22. Han X, Armstrong DW (2007) Acc Chem Res 40:1079–1086

    Article  CAS  Google Scholar 

  23. Anderson JL, Armstrong DW, Wei GT (2006) Anal Chem 78:2893–2902

    CAS  Google Scholar 

  24. Chang JC, Ho WY, Sun IW (2010) Tetrahedron 66:6150–6155

    Article  CAS  Google Scholar 

  25. Guerra-Abreu L, Pino V, Anderson JL, Afonso AM (2008) J Chromatogr A 1214:23–29

    Article  CAS  Google Scholar 

  26. Lopez-Darias J, Pino V, Meng YJ, Anderson JL, Afonso AM (2010) J Chromatogr A 1217:7189–7197

    Article  CAS  Google Scholar 

  27. Zhao F, Ponnaiyan TK, Graham CM, Schall CA, Varanasi S, Anderson JL (2008) Anal Bioanal Chem 392:1271–1275

    Article  CAS  Google Scholar 

  28. Peng JF, Liu JF, Hu XL, Jiang GB (2007) J Chromatogr A 1139:165–170

    Article  CAS  Google Scholar 

  29. Fan YC, Chen ML, Shentu C, EI-Sepai F, Wang KX, Zhu Y, Ye ML (2009) Anal Chim Acta 650:65–69

    Article  CAS  Google Scholar 

  30. Liu JF, Li N, Jiang GB, Liu JM, Jonsson JA, Wen MJ (2005) J Chromatogr A 1066:27–32

    Article  CAS  Google Scholar 

  31. Laus G, Andre M, Bentivoglio G, Schottenberger H (2009) J Chromatogr A 1216:6020–6023

    Article  CAS  Google Scholar 

  32. Hsieh YN, Huang PC, Sun IW, Whang TJ, Hsu CY, Huang HH, Kuei CH (2006) Anal Chim Acta 557:321–328

    Article  CAS  Google Scholar 

  33. Meng YJ, Anderson JL (2010) J Chromatogr A 1217:6143–6152

    Article  CAS  Google Scholar 

  34. Zhao F, Meng YJ, Anderson JL (2008) J Chromatogr A 1208:1–9

    Article  CAS  Google Scholar 

  35. He Y, Pohl J, Engel R, Rothman L, Thomas M (2009) J Chromatogr A 1216:4824–4830

    Article  CAS  Google Scholar 

  36. Anderson JL, Armstrong DW (2003) Anal Chem 75:4851–4858

    Article  CAS  Google Scholar 

  37. Zeng JB, Chen JM, Lin ZQ, Chen WE, Chen X, Wang XR (2008) Anal Chim Acta 619:59–66

    Article  CAS  Google Scholar 

  38. Fernandez-Aluarez M, Llompart M, Lamas JP, Lores M, Garcia-Jares C, Cela R, Dagnac T (2008) Anal Chim Acta 617:37–50

    Article  Google Scholar 

  39. Beltran J, Peruga A, Pitarch E (2003) Anal Bioanal Chem 376:502–511

    Article  CAS  Google Scholar 

  40. Vanessa C, Llompart M, Garcia-Jares C, Cela R, Dagnac T (2006) J Chromatogr A 1124:148–156

    Article  Google Scholar 

  41. Anthony JL, Maginn EJ, Brennecke JF (2001) J Phys Chem B 105:10942–10949

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Ministry of Science and Technology of the People’s Republic of China (Project no. 2009BADB9B03 and 2011AA100807) and the program for Changjiang Scholars and Innovative Research Team in University (IRT1166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, X., Lin, C. et al. A Novel SPME Fiber Chemically Linked with 1-Vinyl-3-hexadecylimidazolium hexafluorophosphate Ionic Liquid Coupled with GC for the Simultaneous Determination of Pyrethroids in Vegetables. Chromatographia 75, 789–797 (2012). https://doi.org/10.1007/s10337-012-2244-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2244-2

Keywords

Navigation