Skip to main content
Log in

Application of solid-phase microextraction for the determination of pyrethroid residues in vegetable samples by GC-MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A solid-phase microextraction (SPME) method has been developed for the determination of 7 pyrethroid insecticides (bifenthrin, lambda-cyhalothrin, permethrin, cyfluthrin, cypermethrin, fenvalerate, and tau-fluvalinate) in water, vegetable (tomato), and fruit (strawberry) samples, based on direct immersion mode and subsequent desorption into the injection port of a GC/MS. The SPME procedure showed linear behavior in the range tested (0.5–50 μg L−1 in water and 0.01–0.1 mg kg−1 in tomato) with r 2 values ranging between 0.97 and 0.99. For water samples limits of detection ranged between 0.1 and 2 μg L−1 with relative standard deviations lower than 20%. Detection limits for tomato samples were between 0.003 and 0.025 mg kg−1 with relative standard deviations around 25%. Finally, the SPME procedure has been applied to vegetable (tomato) and fruit (strawberry) samples obtained from an experimental plot treated with lambda-cyhalothrin, and in both cases the analyte was detected and quantified using a calibration curve prepared using blank matrix. SPME has been shown to be a simple extraction technique which has a number of advantages such as solvent-free extraction, simplicity, and compatibility with chromatographic analytical systems. Difficulties with the correct quantification in a complex matrix are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Schenck FJ, Lehotay SJ (2000) J Chromatogr A 868:51–61

    CAS  PubMed  Google Scholar 

  2. van der Hoff GR, van Zoonen P (1999) J Chromatogr A 843:301–322

    PubMed  Google Scholar 

  3. Thier HP, Kirchhoff J (1992) (eds) Manual of pesticide residue analysis. Deutsche Forschungsgemeinschaft, Germany

  4. Horwitz W (1980) (ed) Official methods of analysis of the association of official analytical chemists. Holland

  5. Van Zoonen P (1996) Analytical methods for pesticide residues in foodstuffs. Ministery of Public Health, Welfare and Sport, The Netherlands

  6. Columé A, Cardenas S, Gallego M, Valcárcel M (2001) J Chormatogr A 912:83–90

    Article  Google Scholar 

  7. Belardi RP, Pawliszyn J (1989) Water Pollut Res J Canada 24:179

    CAS  Google Scholar 

  8. Arthur CL, Pawliszyn J (1990) Anal Chem 62:2145–2148

    CAS  Google Scholar 

  9. Pawliszyn J (1997) Solid phase microextraction theory and practice. Wiley-VCH, New York

  10. Beltrán J, López FJ, Hernández F (2000) J Chromatogr A 885:389–404

    CAS  PubMed  Google Scholar 

  11. Kataoka H, Lord HL, Pawliszyn J (2000) J Chromatogr A 880:35–62

    CAS  PubMed  Google Scholar 

  12. Hernández F, Pitarch E, Beltrán J, López FJ (2002) J Chromatogr B 769:65–77

    Article  Google Scholar 

  13. López FJ, Pitarch E, Egea S, Beltrán J, Hernández F (2001) Anal Chim Acta 433:217–226

    Article  CAS  Google Scholar 

  14. Snow NH (2000) J Chormatogr A 885:445–455

    CAS  Google Scholar 

  15. Kumazawa T, Suzuki O (2000) J Chomatogr B 747:241–254

    CAS  Google Scholar 

  16. Theodoris G, Koster EHM, Jong GJ (2000) J Chromatogr B 745:49–82

    CAS  Google Scholar 

  17. Hernández F, Beltrán J, López FJ, Gaspar JV (2000) Anal Chem 72:2313–2322

    CAS  PubMed  Google Scholar 

  18. Zambonin CG, Palmisano F (2000) J Chromatogr A 874:247–255

    CAS  PubMed  Google Scholar 

  19. Baciocchi R, Attinà M, Lombardi G, Boni MR (2001) J Chromatogr A 911:135–141

    CAS  PubMed  Google Scholar 

  20. Eisert R, Jackson S, Krotzky A (2001) J Chromatogr A 909:29–36

    Article  CAS  PubMed  Google Scholar 

  21. Simplicio AL, Boas LV (1999) J Chromatogr A 833:35–42

    CAS  PubMed  Google Scholar 

  22. Page BD, Lacroix G (1993) J Chromatogr 648:199–211

    PubMed  Google Scholar 

  23. Lamprodou DA, Albanis TA (2002) J Agric Food Chem 50:3359–3365

    PubMed  Google Scholar 

  24. Matich AJ, Rowan DD, Banks NH (1996) Anal Chem 68:4114–4118

    CAS  PubMed  Google Scholar 

  25. Holt RU (2001) J Chromatogr A 937:107–114

    CAS  PubMed  Google Scholar 

  26. Mestres M, Busto O, Guasch J (1998) J Chromatogr A 808:211–218

    CAS  PubMed  Google Scholar 

  27. Song J, Gardner BD, Holland JF, Beaudry RM (1997) J Agric Food Chem 45:1801–1807

    Article  CAS  Google Scholar 

  28. Song J, Fan L, Beaudry RM (1998) J Agric Food Chem 46:3721–3726

    CAS  Google Scholar 

  29. Urruty L, Fournier J, Montury M (2001) Phytoma 129:17–20

    Google Scholar 

  30. Falqui-Cao C, Fournier J, Montury M (2001) Phytoma 129:58–60

    Google Scholar 

  31. Volante M, Pontello M, Valoti L, Cattaneo M, Bianchi M, Colzani L (2000) Pestic Manage Sci 56:618–636

    CAS  Google Scholar 

  32. Hu R, Hennion B, Uturry L, Montury M (1999) Food Addit Contam 16:111–117

    CAS  PubMed  Google Scholar 

  33. Wang Z, Hennion B, Uturry L, Montury M (2000) Food Addit Contam 17:915–923

    Article  CAS  PubMed  Google Scholar 

  34. Falqui-Cao C, Wang Z, Uturry L, Pommier JJ, Montury M (2001) J Agric Food Chem 49:5092–5097

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez H, Padrón C, Marconi L, Ghini S, Colombo R, Sabatini AG, Girotti S (2001) J Chromatogr A 922:257–265

    PubMed  Google Scholar 

  36. Sen NP, Seaman SW, Page BD (1997) J Chromatogr A 788:131–140

    CAS  PubMed  Google Scholar 

  37. Eisert R, Levsen K (1995) Fresenius J Anal Chem 351:555

    CAS  Google Scholar 

  38. Beltran J, Lopez FJ, Cepria O, Hernandez F (1998) J Chromatogr A 808:257–263

    CAS  PubMed  Google Scholar 

  39. Magdic S, Boydboland A, Jinno K, Pawliszyn J (1996) J Chromatogr A 736:219–228

    CAS  Google Scholar 

  40. Boyd-Boland AA, Magdic S, Pawliszyn J (1996) J Chromatogr A 121:929–938

    CAS  Google Scholar 

  41. Boyd-Boland AA, Pawliszyn J (1995) J Chromatogr A 704:163

    CAS  Google Scholar 

  42. Eisert R, Pawliszyn J (1997) J Chromatogr 776:293–303

    CAS  Google Scholar 

  43. Ai J (1997) Anal Chem 69:1230–1236

    CAS  Google Scholar 

  44. Barrionuevo WR, Lanças FM (2000) J High Resol Chromatogr 23:485–488

    CAS  Google Scholar 

  45. Sarrion MN, Santos FJ, Galceran MT (1998) J Chromatogr A 819:197–209

    CAS  Google Scholar 

  46. Pang G-F, Can Y-Z, Fan C-L, Zhang J-J, Li X-M, Mu J, Wang D-N, Liu S-M, Song W-B, Li H-P, Wong S-S, Kubinec R, Tekel J, Tahotna S (2000) J Chromatogr A 882:231–238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work forms a part of the project entitled "Simplificación de la etapa de preparación de muestra en la determinación de residuos de pesticidas mediante microextracción en fase sólida", developed with the financial support of Fundació Caixa Castelló-Bancaixa 2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Beltran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltran, J., Peruga, A., Pitarch, E. et al. Application of solid-phase microextraction for the determination of pyrethroid residues in vegetable samples by GC-MS. Anal Bioanal Chem 376, 502–511 (2003). https://doi.org/10.1007/s00216-003-1916-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1916-z

Keywords

Navigation