Skip to main content
Log in

Two new species, Phytophthora nagaii sp. nov. and P. fragariaefolia sp. nov., causing serious diseases on rose and strawberry plants, respectively, in Japan

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

A new disease of rose was noticed in Chiba Prefecture of Japan in 1968, and the pathogen was initially identified as Phytophthora megasperma based on morphological characteristics. Similar Phytophthora isolates have since been collected from rose plants in Chiba, Kanagawa, and Shizuoka Prefectures. In 2005, several Phytophthora isolates were recovered from crowns of strawberry plants in Hokkaido Prefecture. These were considered to be members of a new species. In this study, we re-examined all these isolates using morphological and physiological studies and a multilocus phylogenetic analysis. The rose and strawberry isolates were mostly similar morphologically and physiologically, with some exceptions. The rose isolates differed significantly from P. megasperma sensu stricto and other related Phytophthora species. The rose and strawberry isolates had external proliferation of sporangia, characteristic funnel-shaped oogonia, predominantly paragynous antheridia, and fast growth rates of 10.5 mm/24 h at an optimum temperature of 28 °C. In the multilocus phylogenetic tree constructed using sequences from the rDNA ITS regions, rDNA LSU, and the translation elongation factor 1-α, β-tubulin and coxI genes, they formed a distinct monophyletic group in clade 7 with strong bootstrap support. The rose and strawberry isolates separated into two distinct groups. The results indicate that the rose and strawberry isolates constitute two separate species, designated here as Phytophthora nagaii and P. fragariaefolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bakkeren G, Kronstad JW, Lévesque CA (2000) Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilaginomycetes. Mycologia 92:510–521

    Article  CAS  Google Scholar 

  • Blair JE, Coffey MD, Park SY, Geiser DM, Kang S (2008) A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet Biol 45:266–277

    Article  CAS  PubMed  Google Scholar 

  • Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17–32

    Article  CAS  PubMed  Google Scholar 

  • Drechsler C (1931) A crown rot of hollyhocks caused by Phytophthora megasperma. J Wash Acad Sci 21:513–526

    Google Scholar 

  • Erwin DC (1965) Reclassification of the causal agent of root rot of alfalfa from Phytophthora cryptogea to P. megasperma. Phytopathology 55:1139–1143

    Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS Press, St Paul

    Google Scholar 

  • Hansen EM, Hamm PB (1983) Morphological differentiation of host-specialized groups of Phytophthora megasperma. Phytopathology 73:129–134

    Article  Google Scholar 

  • Hansen EM, Maxwell DP (1991) Species of the Phytophthora megasperma complex. Mycologia 83:376–381

    Article  Google Scholar 

  • Hansen EM, Brasier CM, Shaw DS, Hamm PB (1986) The taxonomic structure of Phytophthora megasperma: evidence for emerging biological species groups. Trans Br Mycol Soc 87:557–573

    Article  Google Scholar 

  • Hansen EM, Wilcox WF, Reeser PW, Sutton W (2009) Phytophthora rosacearum and P. sansomeana, new species segregated from the Phytophthora megasperma ‘complex’. Mycologia 101:129–135

    Article  PubMed  Google Scholar 

  • Hildebrand AA (1959) A root and stalk rot of soybeans caused by Phytophthora megasperma Drechsler var. sojae var. nov. Can J Bot 37:927–957

    Article  Google Scholar 

  • Ishikawa S, Saito S, Nakayama K, Kuniyasu K (1990) Phytophthora wilt of strawberry caused by Phytophthora cactorum in Tochigi Prefecture (Abstract in Japanese). Ann Phytopath Soc Japan 56:147

    Google Scholar 

  • Jung T, Stukely MJC, Hardy GEStJ, White D, Paap T, Dunstan WA, Burgess TI (2011) Multiple new Phytophthora species from ITS clade 6 associated with natural ecosystems in Australia: evolutionary and ecological implications. Persoonia 26:13–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufmann MJ, Gerdemann JW (1958) Root and stem rot of soybean caused by Phytophthora sojae n. sp. Phytopathology 48:201–208

    Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  CAS  PubMed  Google Scholar 

  • Kröber H (1985) Experiences with Phytophthora de Bary and Pythium Pringsheim. Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft (in German) 225:1–175

  • Kroon LPNM, Bakker FT, van den Bosch GBM, Bonants PJM, Flier WG (2004) Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet Biol 41:766–782

    Article  CAS  PubMed  Google Scholar 

  • Kroon LPNM, Brouwer H, de Cock AWAM, Govers F (2012) The genus Phytophthora Anno 2012. Phytopathology 102:348–364

    Article  PubMed  Google Scholar 

  • MAFF [Ministry of Agriculture, Forestry and Fisheries, Japan] (2011)

  • Mirabolfathy M, Cooke DEL, Duncan JM, Williams NA, Ershad D, Alizadeh A (2001) Phytophthora pistaciae sp. nov. and P. melonis: the principal causes of pistachio gummosis in Iran. Mycol Res 105:1166–1175

    Article  CAS  Google Scholar 

  • Nagai Y, Takeuchi T, Watanabe T (1978) A stem blight of rose caused by Phytophthora megasperma. Phytopathology 68:684–688

    Article  Google Scholar 

  • Naher M, Motohash K, Watanabe H, Chikuo Y, Senda M, Suga H, Brasier C, Kageyama K (2011) Phytophthora chrysanthemi sp. nov., a new species causing root rot of chrysanthemum in Japan. Mycol Prog 10:21–31

    Article  Google Scholar 

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233

    Google Scholar 

  • Pratt RG (1981) Morphology, pathogenicity and host range of Phytophthora megasperma, P. erythroseptica and P. parasitica from arrowleaf clover. Phytopathology 71:276–282

    Article  Google Scholar 

  • Rea AJ, Burgess TI, Hardy GEStJ, Stukely MJC, Jung T (2011) Two novel and potentially endemic species of Phytophthora associated with episodic dieback of Kwongan vegetation in the south-west of Western Australia. Plant Pathol 60:1055–1068

    Article  Google Scholar 

  • Robideau GP, de Cock AW, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Désaulniers N, Eggertson QA, Gachon CM, Hu C-H, Küpper FC, Rintoul TL, Sarhan E, Verstappen EC, Zhang Y, Bonants PJ, Ristaino JB, Lévesque CA (2011) DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11:1002–1011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shirai K, Shinmura A, Takeuchi T, Miwa C, Uematsu S (2006) Occurrence of Phytophthora rot of strawberry caused by an unusual Phytophthora species (Abstract in Japanese). Jpn J Phytopathol 72:207

    Google Scholar 

  • Suzui T, Makino T, Ogoshi A (1980) Phytophthora rot of strawberry caused by Phytophthora nicotianae var. parasitica in Shizuoka. Ann Phytopath Soc Japan 46:169–178

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (* and other methods). Version 4.0b10. Sinauer, Sunderland

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tompkins CM, Tucker CM, Gardner MW (1936) Phytophthora root rot of cauliflower. J Agric Res 53:685–692

    Google Scholar 

  • Watanabe H, Taguchi Y, Hyakumachi M, Kageyama K (2007) Pythium and Phytophthora species associated with root and stem rots of kalanchoe. J Gen Plant Pathol 73:81–88

    Article  Google Scholar 

  • Waterhouse GM (1963) Key to the species of Phytophthora de Bary. Mycol Pap 92:1–22

    Google Scholar 

  • Waterhouse GM (1967) Key to Pythium Pringsheim. Mycol Pap 109:1–15

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

Download references

Acknowledgments

We thank Drs. Yuji Nagai, E. M. Hansen, and Tsuneo Watanabe for kind suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ziaur Rahman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, M.Z., Uematsu, S., Takeuchi, T. et al. Two new species, Phytophthora nagaii sp. nov. and P. fragariaefolia sp. nov., causing serious diseases on rose and strawberry plants, respectively, in Japan. J Gen Plant Pathol 80, 348–365 (2014). https://doi.org/10.1007/s10327-014-0519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-014-0519-1

Keywords

Navigation