Skip to main content
Log in

5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

5-Aminolevulinic acid (ALA), the first committed intermediate for natural biosynthesis of tetrapyrrole compounds, has recently drawn intensive attention due to its broad potential applications. In this study, we describe the construction of recombinant Escherichia coli strains for ALA production from glucose via the C4 pathway. The hemA gene from Rhodobacter capsulatus was optimally overexpressed using a ribosome binding site engineering strategy, which enhanced ALA production substantially from 20 to 689 mg/L. Following optimization of biosynthesis pathways towards coenzyme A and precursor (glycine and succinyl-CoA), and downregulation of hemB expression, the production of ALA was further increased to 2.81 g/L in batch-fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahn JH, Jang Y-S, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66. doi:10.1016/j.copbio.2016.02.034

    Article  CAS  PubMed  Google Scholar 

  2. Akhtar J, Idris A, Abd Aziz R (2014) Recent advances in production of succinic acid from lignocellulosic biomass. Appl Microbiol Biotechnol 98:987–1000. doi:10.1007/s00253-013-5319-6

    Article  CAS  PubMed  Google Scholar 

  3. Bolt EL, Kryszak L, Zeilstraryalls J, Shoolinginjordan PM, Warren MJ (1999) Characterization of the Rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes, HemA and HemT, isolated from recombinant Escherichia coli. Eur J Biochem 265:290–299. doi:10.1046/j.1432-1327.1999.00730.x

    Article  CAS  PubMed  Google Scholar 

  4. Bornscheuer UT (2001) Directed evolution of enzymes for biocatalytic applications. Biocatal Biotransform 19:85–97. doi:10.3109/10242420109003638

    Article  CAS  Google Scholar 

  5. Butler JS, Springer M, Grunberg-Manago M (1987) AUU-to-AUG mutation in the initiator codon of the translation initiation factor IF3 abolishes translational autocontrol of its own gene (infC) in vivo. Proc Natl Acad Sci USA 84:4022–4025. doi:10.1073/pnas.84.12.4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Catazaro J, Caprez A, Guru A, Swanson D, Powers R (2014) Functional evolution of PLP-dependent enzymes based on active-site structural similarities. Proteins 82:2597–2608. doi:10.1002/prot.24624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farasat I, Collens J, Sails HM (2011) Efficient optimization of synthetic metabolic pathways with the RBS Library Calculator. Paper presented at the Abstr Pap Am Chem Soc, Mar

  8. Feng L, Zhang Y, Fu J, Mao Y, Chen T, Zhao X, Wang Z (2016) Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng 113:1284–1293. doi:10.1002/bit.25886

    Article  CAS  PubMed  Google Scholar 

  9. Fu W, Lin J, Cen P (2007) 5-aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Appl Microbiol Biotechnol 75:777–782. doi:10.1007/s00253-007-0887-y

    Article  CAS  PubMed  Google Scholar 

  10. Grant GA, Schuller DJ, Banaszak LJ (1996) A model for the regulation of D-3-phosphoglycerate dehydrogenase, a V-max-type allosteric enzyme. Protein Sci 5:34–41. doi:10.1002/pro.5560050105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gu P, Yang F, Su T, Li F, Li Y, Qi Q (2014) Construction of an l-serine producing Escherichia coli via metabolic engineering. J Ind Microbiol Biotechnol 41:1443–1450. doi:10.1007/s10295-014-1476-6

    Article  CAS  PubMed  Google Scholar 

  12. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514. doi:10.1128/AEM.04023-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang Z, Wang X, Li Y, Wang Q, Qi Q (2012) Small RNA RyhB as a potential tool used for metabolic engineering in Escherichia coli. Biotechnol Lett 34:527–531. doi:10.1007/s10529-011-0794-2

    Article  CAS  PubMed  Google Scholar 

  14. Kang Z, Wang Y, Gu P, Wang Q, Qi Q (2011) Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng 13:492–498. doi:10.1016/j.ymben.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  15. Kang Z, Wang Y, Wang Q, Qi Q (2011) Metabolic engineering to improve 5-aminolevulinic acid production. Bioeng Bugs 2:1–4. doi:10.4161/bbug.2.6.17237

    Article  CAS  Google Scholar 

  16. Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of delta-aminolevulinic acid and vitamin B12. Biotechnol Adv 30:1533–1542. doi:10.1016/j.biotechadv.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  17. Lee JW, Kim TY, Jang YS, Choi S, Sang YL (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29:370–378. doi:10.1016/j.tibtech.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  18. Lee MJ, Chun S-J, Kim H-J, Kwon AS, Jun SY, Kang SH, Kim P (2012) Porphyrin derivatives from a recombinant Escherichia coli grown on chemically defined medium. J Microbiol Biotechnol 22:1653–1658. doi:10.4014/jmb.1208.08054

    Article  CAS  PubMed  Google Scholar 

  19. Lendrihas T, Hunter GA, Ferreira GC (2010) Targeting the active site gate to yield hyperactive variants of 5-aminolevulinate synthase. J Biol Chem 285:13704–13711. doi:10.1074/jbc.M109.074237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leonardi R, Zhang YM, Rock CO, Jackowski S (2005) Coenzyme A: back in action. Prog Lipid Res 44:125–153. doi:10.1016/j.plipres.2005.04.001

    Article  CAS  PubMed  Google Scholar 

  21. Li F, Wang Y, Gong K, Wang Q, Liang Q, Qi Q (2014) Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiol Lett 350:209–215. doi:10.1111/1574-6968.12322

    Article  CAS  PubMed  Google Scholar 

  22. Lin J, Fu W, Cen P (2009) Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresour Technol 100:2293–2297. doi:10.1016/j.biortech.2008.11.008

    Article  CAS  PubMed  Google Scholar 

  23. Liu XX, Wang L, Wang YJ, Cai LL (2010) D-glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture. Appl Biochem Biotechnol 160:822–830. doi:10.1007/s12010-009-8608-x

    Article  CAS  PubMed  Google Scholar 

  24. Lou J, Zhu L, Wu M, Yang L, Lin J, Cen P (2014) High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. J Zhejiang Univ Sci B 15:491–499. doi:10.1631/jzus.B1300283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mauzerall D, Granick S (1956) The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem 219:446

    Google Scholar 

  26. Meng Q, Zhang Y, Ju X, Ma C, Ma H, Chen J, Zheng P, Sun J, Zhu J, Ma Y, Zhao X, Chen T (2016) Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. J Biotechnol 226:8–13. doi:10.1016/j.jbiotec.2016.03.024

    Article  CAS  PubMed  Google Scholar 

  27. Mundhada H, Schneider K, Christensen HB, Nielsen AT (2016) Engineering of high yield production of l-serine in Escherichia coli. Biotechnol Bioeng 113:807–816. doi:10.1002/bit.25844

    Article  CAS  PubMed  Google Scholar 

  28. Neidle EL, Kaplan S (1993) Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol 175:2292–2303. doi:10.1128/jb.175.8.2292-2303.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peters AE, Bavishi A, Cho H, Choudhary M (2012) Evolutionary constraints and expression analysis of gene duplications in Rhodobacter sphaeroides 2.4.1. BMC Res Notes 5:192. doi:10.1186/1756-0500-5-192

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pranawidjaja S, Choi S-I, Lay BW, Kim P (2015) Analysis of heme biosynthetic pathways in a recombinant Escherichia coli. J Microbiol Biotechnol 25:880–886. doi:10.4014/jmb.1411.11050

    Article  PubMed  Google Scholar 

  31. Ramzi AB, Hyeon JE, Kim SW, Park C, Han SO (2015) 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme Microb Technol 81:1–7. doi:10.1016/j.enzmictec.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  32. Rock CO, Calder RB, Karim MA, Jackowski S (2000) Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J Biol Chem 275:1377–1383. doi:10.1074/jbc.275.2.1377

    Article  CAS  PubMed  Google Scholar 

  33. Rock CO, Park HW, Jackowski S (2003) Role of feedback regulation of pantothenate kinase (CoaA) in control of coenzyme A levels in Escherichia coli. J Bacteriol 185:3410–3415. doi:10.1128/jb.185.11.3410-3415.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sasaki K, Watanabe M, Tanaka T, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58:23–29. doi:10.1007/s00253-001-0858-7

    Article  CAS  PubMed  Google Scholar 

  35. Sasikala C, Ramana CV (1995) Biotechnological potentials of anoxygenic phototrophic bacteria. I. Production of single-cell protein, vitamins, ubiquinones, hormones, and enzymes and use in waste treatment. Adv Appl Microbiol 41:173–226. doi:10.1016/s0065-2164(08)70310-1

    Article  CAS  PubMed  Google Scholar 

  36. Thakker C, Martínez I, Li W, San KY, Bennett GN (2015) Metabolic engineering of carbon and redox flow in the production of small organic acids. J Ind Microbiol Biotechnol 42:403–422. doi:10.1007/s10295-014-1560-y

    Article  CAS  PubMed  Google Scholar 

  37. Vadali RV, Bennett GN, San KY (2004) Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metab Eng 6:133–139. doi:10.1016/j.ymben.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  38. Vallari DS, Jackowski S, Rock CO (1987) Regulation of pantothenate kinase by coenzyme A and its thioesters. J Biol Chem 262:2468–2471

    CAS  PubMed  Google Scholar 

  39. Vuoristo KS, Mars AE, Sanders JPM, Eggink G, Weusthuis RA (2016) Metabolic engineering of TCA cycle for production of chemicals. Trends Biotechnol 34:191–197. doi:10.1016/j.tibtech.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  40. Yang P, Liu W, Cheng X, Wang J, Wang Q, Qi Q (2016) A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl Environ Microbiol 82:2709–2717. doi:10.1128/AEM.00224-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu X, Jin H, Cheng X, Wang Q, Qi Q (2016) Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum. Microbiol Res 192:292–299. doi:10.1016/j.micres.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  42. Yu X, Jin H, Liu W, Wang Q, Qi Q (2015) Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Microb Cell Factories 14:1–10. doi:10.1186/s12934-015-0364-8

    Article  Google Scholar 

  43. Zhang J, Kang Z, Chen J, Du G (2015) Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci Rep UK 5:1440–1444. doi:10.1038/srep08584

    Google Scholar 

  44. Zhang J, Kang Z, Ding W, Chen J, Du G (2016) Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production. Appl Biochem Biotechnol 178:1252–1262. doi:10.1007/s12010-015-1942-2

    Article  CAS  PubMed  Google Scholar 

  45. Zhang J, Weng H, Ding W, Kang Z (2016) N-terminal engineering of glutamyl-tRNA reductase with positive charge arginine to increase 5-aminolevulinic acid biosynthesis. Bioengineered. doi:10.1080/21655979.2016.1230572

    Google Scholar 

  46. Zhang L, Chen J, Chen N, Sun J, Zheng P, Ma Y (2013) Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production. Biotechnol Lett 35:763–768. doi:10.1007/s10529-013-1143-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31670092), the Natural Science Foundation of Jiangsu Province (BK20141107), a grant from the Key Technologies R&D Program of Jiangsu Province, China (BE2014607) and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Weng, H., Du, G. et al. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli . J Ind Microbiol Biotechnol 44, 1127–1135 (2017). https://doi.org/10.1007/s10295-017-1940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1940-1

Keywords

Navigation