Skip to main content
Log in

A method for simultaneous gene overexpression and inactivation in the Corynebacterium glutamicum genome

  • Biotechnology Methods
  • Published:
Journal of Industrial Microbiology & Biotechnology

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The gene integration method is an important tool to stably express desirable genes in bacteria. To avoid heavy workload and cost, we constructed a rapid and efficient method for genome modification. This method depended on a mobilizable plasmid, which contains a P tac promoter, an introduced multiple cloning site (iMCS), and rrnBT1T2 terminator. Briefly, the mobilizable plasmid pK18-MBPMT with the P tac-iMCS-rrnBT1T2 cartridge derived from pK18mobsacB was prepared to directly integrate hetero-/homologous DNA into the Corynebacterium glutamicum genome. Like our previous method, this method was based on insertional inactivation and double-crossover homologous recombination, which simultaneously achieved gene overexpression and inactivation in the genome without the use of genetic markers. Compared to the previous method, this protocol omitted the construction of a recombinant expression plasmid and clone of the target gene(s) cassette, which significantly decreased the workload, cost, and operational time. Using this method, the heterologous gene amy and the homologous gene lysC T311I were successfully integrated into the C. glutamicum genome at alaT and avtA loci, respectively. Moreover, the operation time of this method was shorter than that of the previous method, especially for repeated integration. This method, which is based on the mobilizable plasmid pK18-MBPMT, thus represents a potentially attractive protocol for the integration of genes in the course of genetic modification of C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AKFr :

Allosterically feedback-resistant aspartokinase

AlaT:

Aspartate aminotransferase

AvtA:

PLP-dependent aminotransferase

iMCS:

Introduced multiple cloning sites

Km:

Kanamycin

DCW:

Dry cell weight

μ max :

Maximum specific growth rate

LB:

Luria-Bertani

LBG:

LB + 5 g L−1 glucose

LBS:

LB + 100 g L−1 sucrose

LBK:

LB + 50 µg mL−1 Km

LBHIS:

LB + brain heart infusion + sorbitol

References

  1. Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6:87–102. doi:10.1111/1751-7915.12013

    Article  PubMed  Google Scholar 

  2. Hou XH, Chen XD, Zhang Y, Qian H, Zhang WG (2012) L-Valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids 43:2301–2311. doi:10.1007/s00726-012-1308-9

    Article  CAS  PubMed  Google Scholar 

  3. Pátek M, Nešvera J, Guyonvarch A, Reyes O, Leblon C (2003) Promoters of Corynebacterium glutamicum. J Biotechnol 104:311–323. doi:10.1016/j.jbiotec.2005.12.027

    Article  PubMed  Google Scholar 

  4. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13:159–168. doi:10.1016/j.ymben.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  5. van Ooyen J, Noack S, Bott M, Reth A, Eggeling L (2012) Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 109:2070–2081. doi:10.1002/bit.24486

    Article  PubMed  Google Scholar 

  6. Xu JZ, Han M, Zhang JL, Guo YF, Zhang WG (2014) Metabolic engineering Corynebacterium glutamicum for the l-lysine production by increasing the flux into l-lysine biosynthetic pathway. Amino Acids 46:2165–2175. doi:10.1007/s00726-014-1768-1

    Article  CAS  PubMed  Google Scholar 

  7. Xu JZ, Xia XH, Zhang JL, Guo YF, Zhang WG (2014) A method for gene amplification and simultaneous deletion in Corynebacterium glutamicum genome without any genetic markers. Plasmid 72:9–17. doi:10.1016/j.plasmid.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  8. Ikeda M, Katsumata R (1998) A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum. Microbiol 144:1863–1868

    Article  CAS  Google Scholar 

  9. Hu JY, Li YY, Zhang HL, Tan YZ, Wang XY (2014) Construction of a novel expression system for use in Corynebacterium glutamicum. Plasmid 75:18–26. doi:10.1016/j.plasmid.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  10. Correia A, Martin JF, Castro JM (1996) Targeted integration of foreign genes into repetitive sequences of the Brevibacterium lactofermentum genome. FEMS Microbiol Lett 142:259–264. doi:10.1111/j.1574-6968.1996.tb08440.x

    Article  CAS  Google Scholar 

  11. Amador E, Franciso J, José M, Castro M (2007) A Brevibacterium lactofermentum 16S rRNA gene used as target site for homologous recombination. FEMS Microbiol Lett 185:199–204. doi:10.1111/j.1574-6968.2000.tb09062.x

    Article  Google Scholar 

  12. Suzuki N, Inui M, Yukawa H (2007) Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl Microbiol Biotechno 77:871–878. doi:10.1007/s00253-007-1215-2

    Article  CAS  Google Scholar 

  13. Xu DQ, Tan YZ, Huan XJ, Hu XQ, Wang XY (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Methods 80:86–92. doi:10.1016/j.mimet.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  14. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutumicum. Gene 145:69–73. doi:10.1016/0378-1119(94)90324-7

    Article  PubMed  Google Scholar 

  15. van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545. doi:10.1007/s002530051557

    Article  PubMed  Google Scholar 

  16. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Srivastava P, Deb JK (2005) Gene expression systems in corynebacteria. Protein Expression Purif 40:221–229. doi:10.1016/j.pep.2004.06.017

    Article  CAS  Google Scholar 

  18. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223. doi:10.1007/s00253-001-0883-6

    Article  CAS  PubMed  Google Scholar 

  19. Xu JZ, Zhang JL, Guo YF, Zhang WG (2015) Genetically modifying aspartate aminotransferase and aspartate ammonia-lyase affects metabolite accumulation in l-lysine producing strain derived from Corynebacterium glutamicum ATCC13032. J Mol Catal B Enzym 113:82–89. doi:10.1016/j.molcatb.2014.12.015

    Article  CAS  Google Scholar 

  20. Marienhagen J, Eggeling L (2008) Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on l-valine production. Appl Environ Microbiol 74:7457–7462. doi:10.1128/AEM.01025-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ugorčáková J, Jucovič M, Bukovská G, Timko J (1996) Construction and characterization of new corynebacterial plasmids carrying the α-amylase gene. Folia Microbiol 41:10–14. doi:10.1007/BF02816332

    Article  Google Scholar 

  22. Tauch A, Götker S, Pühler A, Kalinowski J, Thierbach G (2002) The alanine racemase gene alr is an alternative to antibiotic resistance genes in cloning systems for industrial Corynebacterium glutamicum strains. J Biotechnol 99:79–91. doi:10.1016/S0168-1656(02)00159-1

    Article  CAS  PubMed  Google Scholar 

  23. Schäfer A, Tauch A, Droste N, Pühler A, Kalinowski J (1997) The Corynebacterium glutamicum cglIM gene encoding a 5-cytosine methyltransferase enzyme confers a specific DNA methylation pattern in an McrBC-deficient Escherichia coli strain. Gene 203:95–101. doi:10.1016/S0378-1119(97)00519-2

    Article  PubMed  Google Scholar 

  24. Vertès AA, Hatakeyama K, Inui M, Kobayshi M, Kurusu Y, Yukawa H (1993) Replacement recombination in Coryneform bacteria: high efficiency integration requirement for non-methylated plasmid DNA. Biosci Biotechnol Biochem 57:2036–2038. doi:10.1271/bbb.57.2036

    Article  Google Scholar 

  25. Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for l-leucine overproduction. Metab Eng 22:40–52. doi:10.1016/j.ymben.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  26. Kinoshita S, Udaka S, Shimono M (1957) Studies on the amino acid fermentation Part I. production of l-glutamic acid by various microorganisms. J Gen Microbiol 3:193–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Youth Program of Natural Science Foundation of Jiangsu Province (No. BK20150149) and the Youth Foundation of Jiangnan University (No. JUSRP115A19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhang, J., Han, M. et al. A method for simultaneous gene overexpression and inactivation in the Corynebacterium glutamicum genome. J Ind Microbiol Biotechnol 43, 1417–1427 (2016). https://doi.org/10.1007/s10295-016-1806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1806-y

Keywords

Navigation