Skip to main content
Log in

Metabolic engineering of Rhodopseudomonas palustris for squalene production

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Squalene is a strong antioxidant used extensively in the food, cosmetic and medicine industries. Rhodopseudomonas palustris TIE-1 was used as the host because of its ability to grow photosynthetically using solar energy and carbon dioxide from atmosphere. The deletion of the shc gene resulted in a squalene production of 3.8 mg/g DCW, which was 27-times higher than that in the wild type strain. For constructing a substrate channel to elevate the conversion efficiency, we tried to fuse crtE gene with hpnD gene. By fusing the two genes, squalene content was increased to 12.6 mg/g DCW, which was 27.4 % higher than that resulted from the co-expression method. At last, the titer of squalene reached 15.8 mg/g DCW by co-expressing the dxs gene, corresponding to 112-fold increase relative to that for wild-type strain. This study provided novel strategies for improving squalene yield and demonstrated the potential of producing squalene by Rhodopseudomonas palustris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Kohno Y, Egawa Y, Itoh S, S-i Nagaoka, Takahashi M, Mukai K (1995) Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochimica et biophysica acta (BBA)-lipids and lipid. Metabolism 1256:52–56

    Google Scholar 

  2. Rao CV, Newmark HL, Reddy BS (1998) Chemopreventive effect of squalene on colon cancer. Carcinogenesis 19:287–290

    Article  CAS  PubMed  Google Scholar 

  3. Budiyanto A, Ahmed NU, Wu A, Bito T, Nikaido O, Osawa T, Ueda M, Ichihashi M (2000) Protective effect of topically applied olive oil against photocarcinogenesis following UVB exposure of mice. Carcinogenesis 21:2085–2090

    Article  CAS  PubMed  Google Scholar 

  4. Smith TJ (2000) Squalene: potential chemopreventive agent. Expert Opin Investig Drugs 9:1841–1848

    Article  CAS  PubMed  Google Scholar 

  5. Newmark HL (1997) Squalene, olive oil, and cancer risk: a review and hypothesis. Cancer Epidemiol Biomark Prev 6:1101–1103

    CAS  Google Scholar 

  6. Reddy LH, Couvreur P (2009) Squalene: a natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev 61:1412–1426

    Article  CAS  PubMed  Google Scholar 

  7. Bhattacharjee P, Shukla V, Singhal R, Kulkarni P (2001) Studies on fermentative production of squalene. World J Microbiol Biotechnol 17:811–816

    Article  CAS  Google Scholar 

  8. Lewis TE, Nichols PD, McMeekin TA (2001) Sterol and squalene content of a docosahexaenoic-acid-producing thraustochytrid: influence of culture age, temperature, and dissolved oxygen. Mar Biotechnol 3:439–447

    Article  CAS  PubMed  Google Scholar 

  9. Li Q, Chen G-Q, Fan K-W, Lu F-P, Aki T, Jiang Y (2009) Screening and characterization of squalene-producing thraustochytrids from Hong Kong mangroves. J Agric Food Chem 57:4267–4272

    Article  CAS  PubMed  Google Scholar 

  10. Mantzouridou F, Naziri E, Tsimidou MZ (2009) Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess. J Agric Food Chem 57:6189–6198

    Article  CAS  PubMed  Google Scholar 

  11. Yue C-J, Jiang Y (2009) Impact of methyl jasmonate on squalene biosynthesis in microalga Schizochytrium mangrovei. Process Biochem 44:923–927

    Article  CAS  Google Scholar 

  12. Fan KW, Aki T, Chen F, Jiang Y (2010) Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J Microbiol Biotechnol 26:1303–1309

    Article  CAS  PubMed  Google Scholar 

  13. Chen G, Fan K-W, Lu F-P, Li Q, Aki T, Chen F, Jiang Y (2010) Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. New Biotechnol 27:382–389

    Article  CAS  Google Scholar 

  14. Mantzouridou F, Tsimidou MZ (2010) Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6. FEMS Yeast Res 10:699–707

    Article  CAS  PubMed  Google Scholar 

  15. Naziri E, Mantzouridou F, Tsimidou MZ (2011) Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means. J Agric Food Chem 59:9980–9989

    Article  CAS  PubMed  Google Scholar 

  16. Englund E, Pattanaik B, Ubhayasekera SJK, Stensjö K, Bergquist J, Lindberg P (2014) Production of squalene in Synechocystis sp. PCC 6803. PLoS One 9:e90270

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bondioli P, Mariani C, Lanzani A, Fedeli E, Muller A (1993) Squalene recovery from olive oil deodorizer distillates. J Am Oil Chem Soc 70:763–766

    Article  CAS  Google Scholar 

  18. He H-P, Corke H (2003) Oil and squalene in amaranthus grain and leaf. J Agric Food Chem 51:7913–7920

    Article  CAS  PubMed  Google Scholar 

  19. Gest H, Kamen MD (1960) The photosynthetic bacteria, in die CO2-assimilation/the assimilation of carbon dioxide. Springer, Berlin, pp 1582–1626

    Book  Google Scholar 

  20. Carlozzi P, Sacchi A (2001) Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. J Biotechnol 88:239–249

    Article  CAS  PubMed  Google Scholar 

  21. Carlozzi P, Pushparaj B, Degl’Innocenti A, Capperucci A (2006) Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency. Appl Microbiol Biotechnol 73:789–795

    Article  CAS  PubMed  Google Scholar 

  22. Jiao Y, Kappler A, Croal LR, Newman DK (2005) Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl Environ Microbiol 71:4487–4496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lorenz RT, Casey WM, Parks L (1989) Structural discrimination in the sparking function of sterols in the yeast Saccharomyces cerevisiae. J Bacteriol 171:6169–6173

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Welander PV, Hunter RC, Zhang L, Sessions AL, Summons RE, Newman DK (2009) Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. J Bacteriol 191:6145–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu W, Yang S, Zhao J, Su T, Zhao L, Liu J (2014) Improving coenzyme Q(8) production in E. coli employing multiple strategies. J Ind Microbiol Biotechnol 41:1297–1303

    Article  CAS  PubMed  Google Scholar 

  26. Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY, Lebar T, Turnšek J, Tomšič N, Avbelj M, Koprivnjak T (2012) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40:1879–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang C, Yoon S-H, Jang H-J, Chung Y-R, Kim J-Y, Choi E-S, Kim S-W (2011) Metabolic engineering of E. coli for α-farnesene production. Metab Eng 13:648–655

    Article  CAS  PubMed  Google Scholar 

  28. Pan J-J, Solbiati JO, Ramamoorthy G, Hillerich BS, Seidel RD, Cronan JE, Almo SC, Poulter CD (2015) Biosynthesis of squalene from farnesyl diphosphate in bacteria: three steps catalyzed by three enzymes. ACS Cent Sci 1:77–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sambrook J, Russell DW (1989) Molecular cloning: a laboratory manual, vol 3. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  30. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1:784–791

    Article  CAS  Google Scholar 

  31. Inui M, Roh JH, Zahn K, Yukawa H (2000) Sequence analysis of the cryptic plasmid pMG101 from Rhodopseudomonas palustris and construction of stable cloning vectors. Appl Environ Microbiol 66:54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the E. coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  33. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  34. Lu H-T, Jiang Y, Chen F (2004) Determination of squalene using high-performance liquid chromatography with diode array detection. Chromatographia 59:367–371

    CAS  Google Scholar 

  35. Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82:837–845

    Article  CAS  PubMed  Google Scholar 

  36. Trinh R, Gurbaxani B, Morrison SL, Seyfzadeh M (2004) Optimization of codon pair use within the (GGGGS)3 linker sequence results in enhanced protein expression. Mol Immunol 40:717–722

    Article  CAS  PubMed  Google Scholar 

  37. Kim SW, Keasling J (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in E. coli enhances lycopene production. Biotechnol Bioeng 72:408–415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Rhodopseudomonas palustris TIE-1 was kindly provided by Dianne K. Newman, Ph.D. (Department of Biology, Massachusetts Institute of Technology, Cambridge). The plasmid pMG103 was kindly provided by Masayuki Inui, Ph.D. (Research Institute of Innovative Technology for the Earth, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Chai, C., Shao, L. et al. Metabolic engineering of Rhodopseudomonas palustris for squalene production. J Ind Microbiol Biotechnol 43, 719–725 (2016). https://doi.org/10.1007/s10295-016-1745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1745-7

Keywords

Navigation