Skip to main content
Log in

Lipid accumulation by Rhodococcus rhodochrous grown on glucose

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Biodiesel is an alternative fuel made from costly vegetable oil feedstocks. Some microorganisms can accumulate lipids when nutrients are limited and carbon is in excess. Rhodococcus rhodochrous is a gram-positive bacterium most often used in bioremediation or acrylamide production. The purpose of this study was to investigate and characterize the lipid accumulation capabilities of R. rhodochrous. Shake flasks and a large-scale fermentation were used to cultivate R. rhodochrous in varying concentrations of glucose. R. rhodochrous achieved almost 50 % of dry cell mass as lipid when grown in 20 g/L of glucose. Wax esters and triglycerides were identified in R. rhodochrous lipid extract. The transesterified extractables of R. rhodochrous consisted of mostly palmitic (35 %) and oleic (42 %) acid methyl esters. This study shows R. rhodochrous to be an oleaginous bacterium with potential for application in alternative fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alvarez HM, Mayer F, Fabritius D, Steinbuchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60(4):367–376. doi:10.1007/s00253-002-1135-0

    Article  CAS  PubMed  Google Scholar 

  3. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  4. Bringe NA (2005) Soybean oil composition for biodiesel. In: Knothe G, Krahl J, Van Gerpen J (eds) The biodiesel handbook. AOCS Press, Champaign, pp 161–164

    Google Scholar 

  5. Brown DE, Hasan M, Lepe-Casillas M, Thornton AJ (1990) Effect of temperature and pH on lipid accumulation by Trichoderma reesei. Appl Microbiol Biotechnol 34:335–339

    CAS  Google Scholar 

  6. Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35(5):431–441. doi:10.1007/s10295-008-0337-6

    Article  CAS  PubMed  Google Scholar 

  7. Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011) Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions. Biotechnol Bioeng 108(5):1049–1055. doi:10.1002/bit.23026

    Article  CAS  PubMed  Google Scholar 

  8. Evans CT, Ratledge C (1984) Effect of nitrogen source on lipid accumulation in oleaginous yeasts. J Gen Microbiol 130:1693–1704

    CAS  Google Scholar 

  9. Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26(7):375–381. doi:10.1016/j.tibtech.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  10. Graham-Rowe D (2011) Beyond food versus fuel. Nature 474:56–58

    Article  Google Scholar 

  11. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210. doi:10.1073/pnas.0604600103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. IEA (2012) Energy Technology Perspectives (2012 ed). International Energy Agency

  13. Johnson V, Singh M, Saini VS, Sista VR, Yadav NK (1992) Effect of pH on lipid accumulation by an oleaginous yeast: Rhodotorula glutinis IIP-30. World J Microbiol Biotechnol 8:382–384

    Article  CAS  PubMed  Google Scholar 

  14. Kalscheuer R, Stoveken T, Luftmann H, Malkus U, Reichelt R, Steinbuchel A (2006) Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol 72(2):1373–1379. doi:10.1128/AEM.72.2.1373-1379.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kalscheuer R, Stoveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbuchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189(3):918–928. doi:10.1128/JB.01292-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kimura K, Nakanishi T (1975) Production of citric acid. Isocitric acid and microbial cells by fermentation, United States Patent

    Google Scholar 

  17. Leiva-Candia DE, Pinzi S, Redel-Macías MD, Koutinas A, Webb C, Dorado MP (2014) The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 123:33–42. doi:10.1016/j.fuel.2014.01.054

    Article  CAS  Google Scholar 

  18. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756. doi:10.1007/s00253-008-1625-9

    Article  CAS  PubMed  Google Scholar 

  19. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  20. Martinkova L, Uhnakova B, Patek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35(1):162–177. doi:10.1016/j.envint.2008.07.018

    Article  CAS  PubMed  Google Scholar 

  21. Mondala AH, Hernandez R, French T, McFarland L, Santo Domingo JW, Meckes M, Ryu H, Iker B (2012) Enhanced lipid and biodiesel production from glucose-fed activated sludge: kinetics and microbial community analysis. AIChE J 58(4):1279–1290

    Article  CAS  Google Scholar 

  22. Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  23. Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32(1):60–71. doi:10.1016/j.biombioe.2007.06.007

    Article  CAS  Google Scholar 

  24. Ratledge C (1982) Microbial oils and fats: an assessment of their commercial potential. Prog Ind Microbiol 16

  25. Ratledge C (2002) Regulation of lipid accumulation in oleaginous microorganisms. Biochem Soc Trans 30(6):1047–1050

    Article  CAS  PubMed  Google Scholar 

  26. Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20(7):155–160. doi:10.1002/lite.200800044

    Article  Google Scholar 

  27. Revellame ED, Hernandez R, French W, Holmes WE, Benson TJ, Pham PJ, Forks A, Callahan Ii R (2012) Lipid storage compounds in raw activated sludge microorganisms for biofuels and oleochemicals production. RSC Adv 2(5):2015. doi:10.1039/c2ra01078j

    Article  CAS  Google Scholar 

  28. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46(1):210–218. doi:10.1016/j.procbio.2010.08.009

    Article  CAS  Google Scholar 

  29. Shi S, Valle-Rodriguez JO, Siewers V, Nielsen J (2011) Prospects for microbial biodiesel production. Biotechnol J 6(3):277–285. doi:10.1002/biot.201000117

    Article  CAS  PubMed  Google Scholar 

  30. Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Sterols and diacylglycerosphocholines in the lipids of the hydrocarbon-utilizing prokaryote Rhodococcus rhodochrous. J Appl Bacteriol 69:856–863

    Article  CAS  Google Scholar 

  31. Tao L, Aden A (2009) The economics of current and future biofuels. Vitr Cell Dev Biol Plant 45(3):199–217. doi:10.1007/s11627-009-9216-8

    Article  Google Scholar 

  32. Waltermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stoveken T, von Landenberg P, Steinbuchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55(3):750–763. doi:10.1111/j.1365-2958.2004.04441.x

    Article  PubMed  Google Scholar 

  33. Waltermann M, Steinbuchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187(11):3607–3619. doi:10.1128/JB.187.11.3607-3619.2005

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wynn JP, Ratledge C (2005) Oils from Microorganisms. In: Shahidi F (ed) Bailey’s industrial oil and fat products, vol 6. Wiley, NewYork, pp 121–153

    Google Scholar 

Download references

Acknowledgments

The authors thank Amanda Lawrence, Magan Green, Kamal Lamichhane Upadhyaya and Jacqueline Blake for their technical assistance. This research was funded by the United States Department of Energy, Office of Energy Efficiency and Renewable Energy (Grant No.: DE-FG36-06GO86025).

Conflict of interest

The authors declare that all experiments documented in this manuscript comply with the current laws of the USA. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Todd French.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shields-Menard, S.A., Amirsadeghi, M., Sukhbaatar, B. et al. Lipid accumulation by Rhodococcus rhodochrous grown on glucose. J Ind Microbiol Biotechnol 42, 693–699 (2015). https://doi.org/10.1007/s10295-014-1564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1564-7

Keywords

Navigation