Skip to main content
Log in

Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abokitse K, Wu M, Bergeron H, Grosse S, Lau PC (2010) Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Appl Microbiol Biotechnol 87:195–203

    Article  CAS  PubMed  Google Scholar 

  2. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  3. Bakir U, Yavascaoglu S, Guvenc F, Ersayin A (2001) An endo-β-1,4-xylanase from Rhizopus oryzae: production, partial purification and biochemical characterization. Enzyme Microb Technol 29:328–334

    Article  CAS  Google Scholar 

  4. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52:858–875

    Article  CAS  Google Scholar 

  5. Bonnin E, Brunnel M, Gouy Y, Lesage-Meessen L, Asther M, Thibault JF (2001) Aspergillus I–1472 and Pycnoporus cinnabarinus MUCL39533, selected for the biotransformation of ferulic acid to vanillic, are also able to produce cell wall polysaccharide-degrading enzymes and ferulic acid esterase. Enzyme Microb Technol 28:70–80

    Article  Google Scholar 

  6. Benoit I, Danchin EGJ, Bleichrodt R, de Vries RP (2007) Biotechnological applications and potential of fungal ferulic acid esterases based on prevalence, classification and biochemical diversity. Biotechnol Lett 30:387–396

    Article  PubMed  Google Scholar 

  7. Benoit I, Navarro D, Marnet N, Rakotomanomana N, Lesage-Meessen L, Sigoillot JC, Asther M (2006) Ferulic acid esterase as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydr Res 341(11):1820–1827

    Article  CAS  PubMed  Google Scholar 

  8. Carvalheiro F, Duarte LC, Girio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    CAS  Google Scholar 

  9. de Vries RP, Burgers K, van de Vondervoort PJI, Frisvad JC, Samson RA, Visser J (2004) A new black Aspergillus species, A. vadensis, is a promising host for homologous and heterologous protein production. Appl Environ Microbiol 70(7):3954–3959

    Article  PubMed Central  PubMed  Google Scholar 

  10. de Vries RP, Michelser B, Poulsen CH, Kroon PA, van den Heuvel RH, Faulds CB, Williamson G, van den Hombergh JP, Visser J (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encodes ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63(12):4638–4644

    PubMed Central  PubMed  Google Scholar 

  11. Faulds CB (2010) What can ferulic acid esterases do for us? Phytochem Rev 9:121–132

    Article  CAS  Google Scholar 

  12. Faulds CB, Williamson G (1995) Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-111) from Aspergillus niger. Appl Microbiol Biotechnol 43(6):1082–1087

    Article  CAS  PubMed  Google Scholar 

  13. Fazary AE, Ju Y (2007) Ferulic acid esterases as biotechnological tools: current and future perspective. Acta Biochim Biophys Sin 39(11):811–828

    Article  CAS  PubMed  Google Scholar 

  14. Fazary AE, Ju Y (2008) The large scale use of ferulic acid esterase in industry. Biotechnol Mol Biol Rev 3(5):95–110

    Google Scholar 

  15. Gordon CL, Khalaj V, Ram AFJ, Archer DB, Brookman JL, Trinci APJ, Jeenes DJ, Doonan JH, Wells B, Punt PJ, van den Hondel CAMJJ, Robson GD (2000) Glucoamylase:green fluorescent protein fusion to monitor protein secretion in Aspergillus niger. Microbiology 146:415–426

    CAS  PubMed  Google Scholar 

  16. Graf E (1992) Antioxidant potential of ferulic acid. Free Radical Biol Med 13:435–448

    Article  CAS  Google Scholar 

  17. Hasyierah MSN, Zulkali MMD, Syahidah KIK (2008) Ferulic acid from lignocellulosic biomass: review. In: Malaysian University conference on engineering and technology. Putri Brasmara, Perlis, Malaysia

  18. Hedge S, Srinivas P, Muralikrishna G (2009) Single-step synthesis of 4-nitrophenyl ferulate for spectrophotometric assay of feruloyl esterase. Anal Biochem 387:128–129

    Article  Google Scholar 

  19. Huang Z, Dostal L, Rosazza JP (1993) Microbial transformation of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens. Appl Environ Microbiol 59(7):2244–2250

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Juge N, Williamson G, Puigserver A, Cummings NJ, Connerton IF, Faulds CB (2001) High-level production of recombinant Aspergillus niger cinnamoyl esterase (FAEA) in the methylotrophic yeast Pichia pastoris. FEMS Yeast Res 1(2):127–132

    Article  CAS  PubMed  Google Scholar 

  21. Karmakar M, Ray RR (2010) Extracellular endoglucanase production by Rhizopus oryzae in solid and liquid state fermentation of agro wastes. Asian J Biotechnol 2:27–36

    Article  CAS  Google Scholar 

  22. Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 2:302–314

    Article  Google Scholar 

  23. Li Y, Bi K (2003) HPLC determination of ferulic acid in rat plasma after oral administration of Rhizoma Chuanxiong and its compound preparation. Biomed Chromatogr 17:543–546

    Article  CAS  PubMed  Google Scholar 

  24. Mathew S, Abraham TE (2005) Studies on the production of feruloyl esterase from cereal brans and sugar cane bagasse by microbial fermentation. Enzyme Microb Technol 36:565–570

    Article  CAS  Google Scholar 

  25. Palaniswamy M, Pradeep BV, Sathya R, Angayarkanni J (2008) Isolation, identification and screening of potential xylanolytic enzyme from litter degradation fungi. Afr J Biotechnol 7:1978–1982

    CAS  Google Scholar 

  26. Patel M, Naik SN (2004) Gamma-oryzanol from rice brain oil—review. J Sci Ind Res 63:569–578

    CAS  Google Scholar 

  27. Pengilly M, Joubert E, Van Zyl WH, Botha A, Viljoen-Bloom M (2008) Enhancement of Rooibos (Aspalathus linearis) aqueous extract and antioxidant yield with fungal enzymes. J Agric Food Chem 56:4047–4053

    Article  CAS  PubMed  Google Scholar 

  28. Poidevin L, Levasseur A, Paes G, Navarro D, Heiss-Blanquet S, Asther M, Record E (2009) Heterologous production of the Piromyces equi cinnamoyl esterase in Trichoderma reesei for biotechnological applications. Lett Appl Microbiol 49(6):673–678

    Article  CAS  PubMed  Google Scholar 

  29. Record E, Asther M, Sigoillot C, Pagès S, Punt PJ, Delattre M, Haon M, Hondel CAMJ, Sigoillot JC, Lesage-Meessen L, Asther M (2003) Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Appl Microbiol Biotechnol 62:349–355

    Article  CAS  PubMed  Google Scholar 

  30. Rosazza JPN, Huang Z, Dostal L, Volm T, Rousseau B (1995) Review: biocatalytic transformation of ferulic acid: an abundant aromatic natural product. J Ind Microbiol 15(6):457–471

    Article  CAS  PubMed  Google Scholar 

  31. Rose SH, van Zyl WH (2002) Constitutive expression of the gene Trichoderma reesei β-1,4-xylanase gee (xyn2) and the β-1,4-endoglucanase gene (egl) in Aspergillus niger in molasses and defined glucose media. Appl Microbiol Biotechnol 58:461–468

    Article  CAS  PubMed  Google Scholar 

  32. Rose SH, van Zyl WH (2008) Exploitation of Aspergillus niger for the heterologous production of cellulases and hemicellulases. Open Biotechnol J 2:167–175

    Article  CAS  Google Scholar 

  33. Rumbold K, Biely P, Mastihubova M, Gudelj GG, Robra K, Prior BA (2003) Purification and properties of a ferulic acid esterase involved in lignocellulose degradation by Aureobasidium pullulans. Appl Environ Microbiol 69(9):5622–5626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sambrook J, Fritsch EF, Miniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  35. Saulnier L, Thibault J (1999) Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J Sci Food Agric 79(3):396–402

    Article  CAS  Google Scholar 

  36. Saulnier L, Vigouroux J, Thibault JF (1995) Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 272(2):241–253

    Article  CAS  PubMed  Google Scholar 

  37. Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes. Factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Article  PubMed  Google Scholar 

  38. Wong DWS, Chan VJ, Batt SB, Sarath G, Liao H (2001) Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass. J Ind Microbiol Biotechnol 38:1961–1967

    Article  Google Scholar 

  39. Yu P, Maenz DD, McKinno JJ, Racz VJ, Christensen DA (2002) Release of ferulic acid from oat hulls by Aspergillus ferulic acid esterase and Trichoderma xylanase. J Agric Food Chem 50(6):1625–1630

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the South African National Energy Research Institute (SANERI), the Department of Science and Technology (DST) and the National Research Foundation (NRF) for financial support. This work is based on the research supported in part by the National Research Foundation of South Africa (Grant 76597).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinda Viljoen-Bloom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwane, E.N., Rose, S.H., van Zyl, W.H. et al. Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material. J Ind Microbiol Biotechnol 41, 1027–1034 (2014). https://doi.org/10.1007/s10295-014-1430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1430-7

Keywords

Navigation