Skip to main content
Log in

Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The thermoalkalophilic Bacillus halodurans JB 99 cells known for production of novel thermostable alkaline keratinolytic protease were immobilized in calcium alginate matrix. Batch and repeated batch cultivation using calcium alginate immobilized cells were studied for alkaline protease production in submerged fermentation. Immobilized cells with 2.5% alginate and 350 beads/flask of initial cell loading showed enhanced production of alkaline protease by 23.2% (5,275 ± 39.4 U/ml) as compared to free cells (4,280 ± 35.4 U/ml) after 24 h. In the semicontinuous mode of cultivation, immobilized cells under optimized conditions produced an appreciable level of alkaline protease in up to nine cycles and reached a maximal value of 5,975 U/ml after the seventh cycle. The enzyme produced from immobilized cells efficiently degraded chicken feathers in the presence of a reducing agent which can help the poultry industry in the management of keratin-rich waste and obtaining value-added products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adinarayan K, Raju B, Ellaiah P (2004) Investigation on alkaline protease production with B. subtiltis PE-11 immobilized in calcium alginate gel beads. Process Biochem 39:1331–1339. doi:10.1016/S0032-9592(03)00263-2

    Article  Google Scholar 

  2. Adinarayan K, Jyothi B, Ellaiah P (2005) Production of alkaline protease with immobilized cells of Bacillus subtilis PE-11 in various matrices by entrapment technique. AAPS Pharma Sci Tech 6:391–397. doi:10.1208/pt060348

    Article  Google Scholar 

  3. Beshay U (2003) Production of alkaline protease by Teredinobacter turnirae cells immobilized in Ca-alginate beads. African J Biotechnol 2:60–65

    CAS  Google Scholar 

  4. Bodalo A, Bastida J, Gomez JL, Alcarz Asaza ML (1996) Immobilization of Pseudomonas sp BA2 by entrapment in calcium alginate and its application for the production of l-alanine. Enzyme Microbial Technol 19:176–180. doi:10.1016/0141-0229(95)00228-6

    Article  Google Scholar 

  5. D’Souza SF (1999) Immobilized enzymes in bioprocess. Curr Science 77:69–79

    Google Scholar 

  6. D’Souza SF (2002) Trends in immobilized enzyme and cell technology. Ind J Biotechnol 1:321–338

    Google Scholar 

  7. Ganesh CK, Hiroshi T (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv 17:561–594. doi:10.1016/S0734-9750(99)00027-0

    Article  Google Scholar 

  8. Gashow M, Amare G (2000) Immobilization of alkaliphilic Bacillus sp. Cells for xylanase production using batch and continuous culture. Appl Biochem Biotechnol 87:95–101. doi:10.1385/ABAB:87:2:95

    Article  Google Scholar 

  9. Grazziotin A, Pimentel FA, De Jong EV, Brandelli A (2006) Nutritional improvement of feather protein by treatment with microbial keratinase. Anim Feed Sci Technol 126:135–144. doi:10.1016/j.anifeedsci.2005.06.002

    Article  CAS  Google Scholar 

  10. Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33. doi:10.1007/s00253-005-0239-8

    Article  PubMed  CAS  Google Scholar 

  11. Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32. doi:10.1007/s00253-002-0975-y

    Article  PubMed  CAS  Google Scholar 

  12. Horikoshi K (1999) Alkalophiles: some applications of their products for biotechnology. Micro Mol Bio Rev 63:735–750

    CAS  Google Scholar 

  13. Hsin-Ju H, Tung Kai, Giridhar R, Chu M, Wen TW (2007) Production of ascorbic acid glucoside by alginate entrapped mycelia of Aspergillus niger. Appl Microbiol Biotechnol 77:53–60. doi:10.1007/s00253-007-1148-9

    Article  Google Scholar 

  14. Jamuna R, Ramakrishna V (1992) Continuous synthesis of thermo stable α-amylase by Bacillus cells immobilized in calcium alginate. Enzyme Microbiol Technol 14:36–41. doi:10.1016/0141-0229(92)90023-H

    Article  CAS  Google Scholar 

  15. Johnvesly B, Manjunath BR, Naik GR (2002) Pigeon pea waste as a novel, inexpensive substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB 99. Bioresour Technol 82:61–64. doi:10.1016/S0960-8524(01)00147-X

    Article  PubMed  CAS  Google Scholar 

  16. Kar S, Asish M, Das Mohapatra P, Samanta S, Bikash RP, Mondal K (2008) Production of xylanase by immobilized Trichoderma reesei SAF3 in Ca-alginate beads. J Ind Microbiol Biotechnol 35:245–249. doi:10.1007/s10295-007-0292-7

    Article  PubMed  CAS  Google Scholar 

  17. Kembhavi AA, Kulkarni A, Pant A (1993) Salt-tolerant and thermostable alkaline protease from Bacillus subtiltis NCIM No. 64. Appl Biochem Biotechnol 38:83–92

    Article  PubMed  CAS  Google Scholar 

  18. Onifade AA, Al-Sane NA, Musallam AA, Al-Zarban S (1998) Potentials for biotechnological applications of keratin degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resource. Bioresour Technol 66:1–11. doi:10.1016/S0960-8524(98)00033-9

    Article  CAS  Google Scholar 

  19. Pradeep K, Satyanarayana T (2007) Production of thermostable and neutral glucoamylase using immobilized Thermomucor indicae-seudaticae. World J Microbiol Biotechnol 23:509–517. doi:10.1007/s11274-006-9253-y

    Article  Google Scholar 

  20. Ramakrishna SV, Prakasham RS (1999) Microbial fermentations with immobilized cells. Curr Sci 77:87–100

    CAS  Google Scholar 

  21. Ramesh CK, Mukesh K, Renuka R (2004) Enhanced production of an alkaline pectinase from Streptomyces sp. RCK-SC by whole-cell immobilization and solid and state cultivation. World J Microbiol Biotechnol 20:257–263. doi:10.1023/B:WIBI.0000023833.15866.45

    Article  Google Scholar 

  22. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Micro Mol Bio Rev 62:597–635

    CAS  Google Scholar 

  23. Shrinivas D, Naik GR (2011) Characterization of alkaline thermostable keratinolytic protease from thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. Int Biodeter Biodegr 65:29–35

    Article  CAS  Google Scholar 

  24. Subba Rao C, Madhavendra SS, Sreenivas Rao R, Hobbs PJ, Prakasham RS (2008) Studies on improving the immobilized bead reusability and alkaline protease production by isolated immobilized Bacillus circulans (MTCC 6811) using overall evaluation criteria. Appl Biochem Biotechnol 150:65–83

    Article  PubMed  Google Scholar 

  25. Virupakshi S, Gireesh B, Satish GR, Naik GR (2005) Production of a xylanolytic enzyme by a thermoalkalophilic Bacillus sp. JB 99 in solid state fermentation. Process Biochem 40:431–435. doi:10.1016/j.procbio.2004.01.027

    Article  CAS  Google Scholar 

  26. Vuillemard JC, Terre S, Benoit S, Amiot J (1988) Protease production by immobilized growing cells of Serratia marcescens and Myxococcus xanthus in calcium alginate gel beads. Appl Microbiol Biotechnol 27:423–431. doi:10.1007/BF00451607

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Council of Scientific and Industrial Research, New Delhi (Scheme no. 37/1297/07 EMR-II), for the financial support and providing Mr. D. Shrinivas with the Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Naik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrinivas, D., Kumar, R. & Naik, G.R. Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. J Ind Microbiol Biotechnol 39, 93–98 (2012). https://doi.org/10.1007/s10295-011-1003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1003-y

Keywords

Navigation