Ament K, Kant M, Sabelis MW, Haring MA, Schuurink RC (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 135:2025–2037. https://doi.org/10.1104/pp.104.048694
CAS
Article
PubMed
PubMed Central
Google Scholar
Basit A, Hanan A, Nazir T, Majeed MZ, Qiu D (2019) Molecular and functional characterization of elicitor PeBC1 extracted from Botrytis cinerea involved in the induction of resistance against green peach aphid (Myzus persicae) in common beans (Phaseolus vulgaris L.). Insects 10(2):35. https://doi.org/10.3390/insects10020035
Article
PubMed Central
Google Scholar
Bianchet C, Wong A, Quaglia M, Alqurashi M, Gehring C, Ntoukakis V, Pasqualini S (2019) An Arabidopsis thaliana leucine-rich repeat protein harbors and adenylyl cyclase center and affect responses to pathogens. J Plant Physiol 232:12–22. https://doi.org/10.1016/j.jplph.2018.10.025
CAS
Article
PubMed
Google Scholar
Bohinc T, Trdan S (2012) Trap crops for reducing damage caused by cabbage stink bugs (Eurydema spp.) and flea beetles (Phyllotreta spp.) on white cabbage: fact or fantasy? J Food Agric Environ 10:1365–1370. https://doi.org/10.1234/4.2012.3273
Article
Google Scholar
Cardoza YJ, Alborn HT, Tumlinson JH (2002) In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J Chem Ecol 28:161–174. https://doi.org/10.1023/A:1013523104853
CAS
Article
PubMed
Google Scholar
Cardoza YJ, Teal PE, Tumlinson JH (2003) Effect of peanut plant fungal infection on oviposition preference by Spodoptera exigua and on host-searching behavior by Cotesia marginiventris. Environ Entomol 32:970–976. https://doi.org/10.1603/0046-225X-32.5.970
Article
Google Scholar
Costarelli A, Bianchet C, Ederli L, Salerno G, Piersanti S, Rebora M, Pasqualini S (2020) Salicylic acid induced by herbivore feeding antagonizes jasmonic acid mediated plant defenses against insect attack. Plant Signal Behav 15(1):1704517. https://doi.org/10.1080/15592324.2019.1704517
CAS
Article
PubMed
Google Scholar
De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux JP, Van Loon LC, Dicke M, Pieterse CM (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937. https://doi.org/10.1094/MPMI-18-0923
CAS
Article
PubMed
Google Scholar
Dean JM, Mescher MC, De Moraes CM (2009) Plant-rhizobia mutualism influences aphid abundance on soybean. Plant Soil 323:187–196. https://doi.org/10.1007/s11104-009-9924-1
CAS
Article
Google Scholar
Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
Article
PubMed
PubMed Central
Google Scholar
Degenhardt DC, Refi-Hind S, Stratmann JW, Lincoln D (2010) Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum. Phytochemistry 71:2024–2037. https://doi.org/10.1016/j.phytochem.2010.09.010
CAS
Article
PubMed
Google Scholar
Desurmont GA, Xu H, Turlings TC (2016) Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa. Plant Cell Environ 39:1920–1927. https://doi.org/10.1111/pce.12752
CAS
Article
PubMed
Google Scholar
Dötterl S, Jurgens A, Wolfe L, Biere A (2009) Disease status and population origin effects on floral scent: potential consequences for oviposition and fruit predation in a complex interaction between a plant, fungus, and noctuid moth. J Chem Ecol 35:307–319. https://doi.org/10.1007/s10886-009-9601-0
CAS
Article
PubMed
Google Scholar
Eberl F, Fernandez de Bobadilla M, Reichelt M, Hammerbacher A, Gershenzon J, Unsicker SB (2020) Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit. Ecol Lett 23:1073–1084. https://doi.org/10.1111/ele.13506
Article
PubMed
Google Scholar
Ederli L, Dawe A, Pasqualini S, Quaglia M, Xiong L, Gehring C (2015) Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens. Front Plant Sci 6:79. https://doi.org/10.3389/fpls.2015.00079
Article
PubMed
PubMed Central
Google Scholar
Ederli L, Salerno G, Bianchet C, Rebora M, Piersanti S, Pasqualini S (2020) Eurydema oleracea negatively affects defenses in Arabidopsis by inducing salicylic acid-mediated signaling pathway. Arthropod Plant Interact 14:139–148. https://doi.org/10.1007/s11829-019-09728-6
Article
Google Scholar
Ellis C, Karafyllidis L, Turner JG (2002) Constitutive activation of jasmonate signalling in Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol Plant Microbe Interact 15:1025–1030. https://doi.org/10.1094/MPMI.2002.15.10.1025
CAS
Article
PubMed
Google Scholar
Espinas NA, Saze H, Saijo Y (2016) Epigenetic control of defense signalling and priming in plants. Front Plant Sci 7:1201. https://doi.org/10.3389/fpls.2016.01201
Article
PubMed
PubMed Central
Google Scholar
Fernandez-Conradi P, Jactel H, Robin C, Tack AJM, Castagneyrol B (2018) Fungi reduce preference and performance of insect herbivores on challenged plants. Ecology 99:300–311. https://doi.org/10.1002/ecy.2044
Article
PubMed
Google Scholar
Frew A, Price JN (2019) Mycorrhizal-mediated plant–herbivore interactions in a high CO2 world. Funct Ecol 33:1376–1385. https://doi.org/10.1111/1365-2435.13347
Article
Google Scholar
Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923
CAS
Article
PubMed
Google Scholar
Groux R, Hilfiker O, Gouhier-Darimont C, Peñaflor MF, Erb M, Reymond P (2014) Role of methyl salicylate on oviposition deterrence in Arabidopsis thaliana. J Chem Ecol 40:754–759. https://doi.org/10.1007/s10886-014-0470-9
CAS
Article
PubMed
Google Scholar
Guo Z, Döll K, Dastjerdi R, Karlovsky P, Dehne H-W, Altincicek B (2014) Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor). PLoS One 9(6):e100112. https://doi.org/10.1371/journal.pone.0100112
CAS
Article
PubMed
PubMed Central
Google Scholar
Jiang Z, Dong X, Zhang Z (2016) Network-based comparative analysis of Arabidopsis immune responses to Golovinomyces orontii and Botrytis cinerea infections. Sci Rep 6:19149. https://doi.org/10.1038/srep19149
CAS
Article
PubMed
PubMed Central
Google Scholar
Jiang Y, Ye J, Li S, Niinemets U (2017) Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber: a high-resolution analysis of dose dependence. J Exp Bot 68:4679–4694. https://doi.org/10.1093/jxb/erx244
CAS
Article
PubMed
PubMed Central
Google Scholar
Lazebnik J, Frago E, Dicke M, van Loon JJA (2014) Phytohormone mediation of interactions between herbivores and plant pathogens. J Chem Ecol 40:730–741. https://doi.org/10.1007/s10886-014-0480-7
CAS
Article
PubMed
Google Scholar
Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SC, Ritsema T, Pieterse CM (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232:1423–1432. https://doi.org/10.1007/s00425-010-1265-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
CAS
Article
PubMed
Google Scholar
Mann RS, Ali JG, Hermann SL, Tiwari S, Pelz-Stelinski KS, Alborn HT et al (2012) Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathog 8(3):1002610. https://doi.org/10.1371/journal.ppat.1002610
CAS
Article
Google Scholar
Mauck KE, De Moraes CM, Mescher MC (2015) Infection of host plants by Cucumber mosaic virus increases the susceptibility of Myzus persicae aphids to the parasitoid Aphidius colemani. Sci Rep 5:10963. https://doi.org/10.1038/srep10963
CAS
Article
PubMed
PubMed Central
Google Scholar
Micali CO, Neumann U, Grunewald D, Panstruga R, O’Connel R (2011) Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13(2):210–226. https://doi.org/10.1111/j.1462-5822.2010.01530.x
CAS
Article
PubMed
Google Scholar
Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR (2012) ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLoS One 7(4):e35995. https://doi.org/10.1371/journal.pone.0035995
CAS
Article
PubMed
PubMed Central
Google Scholar
Moisan K, Cordovez V, van de Zande EM, Raaijmakers JM, Dicke M, Lucas-Barbosa D (2019) Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia 190:589–604. https://doi.org/10.1007/s00442-019-04433-w
Article
PubMed
PubMed Central
Google Scholar
Ngah N, Thomas RL, Shaw MW, Fellowes MDE (2018) Asymptomatic host plant infection by the widespread pathogen Botrytis cinerea alters the life histories, behaviors, and interactions of an aphid and its natural enemies. Insects 9(3):80. https://doi.org/10.3390/insects9030080
Article
PubMed Central
Google Scholar
Partida-Martinez LPP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:100. https://doi.org/10.3389/fpls.2011.00100
Article
PubMed
PubMed Central
Google Scholar
Passardi F, Dobias J, Valério L, Guimil S, Penel C, Dunand C (2007) Morphological and physiological traits of three major Arabidopsis thaliana accessions. J Plant Physiol 164(8):980–992. https://doi.org/10.1016/j.jplph.2006.06.008
CAS
Article
PubMed
Google Scholar
Piersanti S, Rebora M, Ederli L, Pasqualini S, Salerno G (2020) Role of chemical cues in cabbage stink bug host plant selection. J Insect Physiol 120:103994. https://doi.org/10.1016/j.jinsphys.2019.103994
CAS
Article
PubMed
Google Scholar
Piesik D, Lemńczyk G, Skoczek A, Lamparski R, Bocianowski J, Kotwica K, Delaney KJ (2011) Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. J Plant Physiol 168:1534–1542. https://doi.org/10.1016/j.jplph.2011.01.032
CAS
Article
PubMed
Google Scholar
Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055
CAS
Article
PubMed
Google Scholar
Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. https://doi.org/10.1146/annurev-phyto-082712-102340
CAS
Article
PubMed
Google Scholar
Pineda A, Dicke M, Pieterse CMJ, Pozo MJ (2013) Beneficial microbes in a changing environment: Are they always helping plants to deal with insects? Funct Ecol 27:574–586. https://doi.org/10.1111/1365-2435.12050
Article
Google Scholar
Quaglia M, Fabrizi M, Zazzerini A, Zadra C (2012) Role of pathogen-induced volatiles in the Nicotiana tabacum-Golovinomyces cichoracerum interaction. Plant Physiol Biochem 52:9–20. https://doi.org/10.1016/j.plaphy.2011.11.006
CAS
Article
PubMed
Google Scholar
Rostás M, Hilker M (2002) Asymmetric plant-mediated cross-effects between a herbivorous insect and a phytopathogenic fungus. Agric For Entomol 4:223–231. https://doi.org/10.1046/j.1461-9563.2002.00147.x
Article
Google Scholar
Rostás M, Ton J, Mauch-Mani B, Turlingst TCJ (2006) Fungal infection reduces herbivore-induced plant volatiles of maize but does not affect naïve parasitoids. J Chem Ecol 32:1897–1909. https://doi.org/10.1007/s10886-006-9147-3
CAS
Article
PubMed
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089
CAS
Article
PubMed
PubMed Central
Google Scholar
Shiojiri K, Takabayashi J, Yano S, Takafuji A (2001) Infochemically mediated tritrophic interaction webs on cabbage plants. Popul Ecol 43:23–29. https://doi.org/10.1002/9780470015902.a0021912
Article
Google Scholar
Simon M, Hilker M (2005) Does rust infection of willow affect feeding and oviposition behavior of willow leaf beetles? J Insect Behav 18:115–129. https://doi.org/10.1007/s10905-005-9351-y
Article
Google Scholar
Sun Z, Liu Z, Zhou W, Jin H, Liu H, Zhou A, Zhang A, Wang MQ (2016) Temporal interactions of plant-insect-predator after infection of bacterial pathogen on rice plants. Sci Rep 6:26043. https://doi.org/10.1038/srep26043
CAS
Article
PubMed
PubMed Central
Google Scholar
Tanaka K, Taniguchi S, Tamaoki D, Yoshitomi K, Akimitsu K, Gomi K (2014) Multiple roles of plant volatiles in jasmonate-induced defense response in rice. Plant Signal Behav 9:e29247. https://doi.org/10.4161/psb.29247
CAS
Article
PubMed
PubMed Central
Google Scholar
Tasin M, Knudsen GK, Pertot I (2012) Smelling a diseased host: grapevine moth responses to healthy and fungus-infected grapes. Anim Behav 83:555–562. https://doi.org/10.1016/j.anbehav.2011.12.003
Article
Google Scholar
The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. https://doi.org/10.1038/35048692
Article
Google Scholar
Ulland S, Ian E, Mozuraitis R, Borg-Karlson AK, Meadow R, Mustaparta H (2008) Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, Noctuidae). Chem Senses 33:35–46. https://doi.org/10.1093/chemse/bjm061
CAS
Article
PubMed
Google Scholar
van Schie CCN, Haring MA, Schuurink RC (2007) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263. https://doi.org/10.1007/s11103-007-9149-8
CAS
Article
PubMed
PubMed Central
Google Scholar
War AR, Sharma HC, Paulraj MG, War MY, Ignacimuthu S (2011) Herbivore induced plant volatiles: their role in plant defense for pest management. Plant Signal Behav 6:1973–1978. https://doi.org/10.4161/psb.6.12.18053
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang FZ, Li Y, Yang B (2013) The inhibitory effects of rose powdery mildew infection on the oviposition behaviour and performance of beet armyworms. Entomol Exp Appl 148:39–47. https://doi.org/10.1111/eea.12069
Article
Google Scholar
Zhang Y, Yang X, Zeng H, Guo L, Yuan J, Qiu D (2014) Fungal elicitor protein PebC1 from Botrytis cinerea improves disease resistance in Arabidopsis thaliana. Biotechnol Lett 36:1069–1078. https://doi.org/10.1007/s10529-014-1462-0
CAS
Article
PubMed
Google Scholar