Skip to main content
Log in

Fungal elicitor protein PebC1 from Botrytis cinerea improves disease resistance in Arabidopsis thaliana

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

We previously identified a novel protein elicitor, PebC1, from Botrytis cinerea and described its enhancement of plant growth, drought tolerance and disease resistance in tomato. Here, we have investigated the defense-associated molecular responses in Arabidopsis thaliana after treatment with recombinant PebC1. PebC1 was expressed in Escherichia coli. Recombinant protein treatments improved plant resistance to Botrytis infection and maintained plant defenses for more than 21 days. The purified protein at 10 μg ml−1 activated extracellular medium alkalization (pH) and reactive oxygen species and nitric oxide generation and also induced defense gene expression. Arabidopsis mutants that are insensitive to salicylic acid had increased resistance to Botrytis infection after PebC1 treatment but PebC1 did not affect the resistance of mutants with jasmonic acid and ethylene transduction pathways. The results suggest that PebC1 can function as an activator of plant disease resistance and can promote disease resistance to Botrytis in A. thaliana through the ethylene signal transduction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bóka K, Orbán N (2007) New aspect of H2O2 signaling. Plant Signal Behav 2:498–500

    Article  PubMed Central  PubMed  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Che FS, Nakajima Y, Tanaka N, Iwano M et al (2000) Flagellin from an incompatible strain of Pseudomonas avenae induces a resistance response in cultured rice cells. J Biol Chem 275:32347–32356

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S et al (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724

    Article  PubMed  CAS  Google Scholar 

  • Govrin EM, Rachmilevitch S, Tiwari BS, Solomon M et al (2006) An elicitor from Botrytis cinerea induces the hypersensitive response in Arabidopsis thaliana and other plants and promotes the gray mold disease. Phytopathology 96:299–307

    Article  PubMed  CAS  Google Scholar 

  • Hu XY, Neill SJ, Cai WM, Tang ZC (2003) NO-mediated hypersensitive responses of rice suspension cultures induced by incompatible elicitor. Chin Sci Bull 48:358–363

    Article  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C et al (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Keller H, Pamboukdjian N, Ponchet M, Poupet A et al (1999) Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and non-specific disease resistance. Plant Cell 11:223–235

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leitner M, Vandelle E, Gaupels F, Bellin D et al (2009) NO signals in the haze: nitric oxide signalling in plant defence. Cur Opin Plant Biol 12:451–458

    Article  CAS  Google Scholar 

  • Mansfield JW (2009) From bacterial avirulence genes to effector functions via the hrp delivery system: an overview of 25 years of progress in our understanding of plant innate immunity. Mol Plant Pathol 10:721–734

    Article  PubMed  CAS  Google Scholar 

  • Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quilleré I, Leydecker MT et al (2002) Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta 215:708–715

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JD (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113–1128

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Noda J, Brito N, González C (2010) The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10:38

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecules hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  PubMed  CAS  Google Scholar 

  • Repka V (2006) Early defence responses induced by two distinct elicitors derived from a Botrytis cinerea in grapevine leaves and cell suspensions. Biol Plant 50:94–106

    Article  CAS  Google Scholar 

  • Rospert S, Dubaquié Y, Gautschi M (2002) Nascent-polypeptide-associated complex. Cell Mol Life Sci 59:1632–1639

    Article  PubMed  CAS  Google Scholar 

  • Rossi FR, Gárriz A, Marina M, Romero FM et al (2011) The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling. Mol Plant Microbe Interact 24:888–896

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, van Baarlen P, van Kan JA (2008) Phytotoxic Nep1-like proteins from the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells. New Phytol 177:493–505

    PubMed  CAS  Google Scholar 

  • Silipo A, Erbs G, Shinya T, Dow JM et al (2010) Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 20:406–419

    Article  PubMed  CAS  Google Scholar 

  • Tallant T, Deb A, Kar N, Lupica J et al (2004) Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kB and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol 4:33

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Vandelle E, Poinssot B, Wendehenne D, Bentéjac M et al (2006) Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol Plant Microbe Interact 19:429–440

    Article  PubMed  CAS  Google Scholar 

  • Wei ZM, Laby RJ, Zumoff CH, Bauer DW et al (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88

    Article  PubMed  CAS  Google Scholar 

  • Xu MJ, Dong JF, Zhu MY (2005) Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway. Plant Physiol 139:991–998

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka H, Asai S, Yoshioka M, Kobayashi M (2009) Molecular mechanisms of generation for nitric oxide and reactive oxygen species, and role of the radical burst in plant immunity. Mol Cells 28:321–329

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yang X, Liu Q, Qiu D et al (2010) Purification of novel protein elicitor from Botrytis cinerea that induces disease resistance and drought tolerance in plants. Microbiol Res 165:142–151

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ et al (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Research and Development Program (“863” Program) of China (2011AA10A205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiufen Yang or Dewen Qiu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yang, X., Zeng, H. et al. Fungal elicitor protein PebC1 from Botrytis cinerea improves disease resistance in Arabidopsis thaliana . Biotechnol Lett 36, 1069–1078 (2014). https://doi.org/10.1007/s10529-014-1462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1462-0

Keywords

Navigation