Skip to main content
Log in

Some local properties of subsolution and supersolutions for a doubly nonlinear nonlocal p-Laplace equation

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We establish a local boundedness estimate for weak subsolutions to a doubly nonlinear parabolic fractional p-Laplace equation. Our argument relies on energy estimates and a parabolic nonlocal version of De Giorgi’s method. Furthermore, by means of a new algebraic inequality, we show that positive weak supersolutions satisfy a reverse Hölder inequality. Finally, we also prove a logarithmic decay estimate for positive supersolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bögelein, Verena, Duzaar, Frank, Kinnunen, Juha, Scheven, Christoph: Higher integrability for doubly nonlinear parabolic systems. arXiv e-prints, page arXiv:1810.06039, (Oct 2018)

  2. Bögelein, Verena, Duzaar, Frank, Liao, Naian: On the Hölder regularity of signed solutions to a doubly nonlinear equation. arXiv e-prints, page arXiv:2003.04158, (March 2020)

  3. Gianazza, U., Vespri, V.: A Harnack inequality for solutions of doubly nonlinear parabolic equations. J. Appl. Funct. Anal. 1(3), 271–284 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Kinnunen, J., Kuusi, T.: Local behaviour of solutions to doubly nonlinear parabolic equations. Math. Ann. 337(3), 705–728 (2007)

    Article  MathSciNet  Google Scholar 

  5. Kuusi, Tuomo, Laleoglu, Rojbin, Siljander, Juhana, Urbano, José Miguel.: Hölder continuity for Trudinger’s equation in measure spaces. Calc. Var. Partial Differential Equations 45(1–2), 193–229 (2012)

  6. Kuusi, T., Siljander, J., Urbano, J.M.: Local Hölder continuity for doubly nonlinear parabolic equations. Indiana Univ. Math. J. 61(1), 399–430 (2012)

    Article  MathSciNet  Google Scholar 

  7. Liao, Naian: Remarks on parabolic De Giorgi classes. arXiv e-prints, page arXiv:2004.14324, (April 2020)

  8. Felsinger, M., Kassmann, M.: Local regularity for parabolic nonlocal operators. Comm. Partial Differential Equations 38(9), 1539–1573 (2013)

    Article  MathSciNet  Google Scholar 

  9. Di Nezza, Eleonora, Palatucci, Giampiero, Valdinoci, Enrico: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

  10. Landkof, N.S.: Foundations of modern potential theory. Springer-Verlag, New York-Heidelberg,: Translated from the Russian by A, p. 180. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band (1972)

  11. Kassmann, Moritz: A new formulation of Harnack’s inequality for nonlocal operators. C. R. Math. Acad. Sci. Paris 349(11–12), 637–640 (2011)

  12. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)

    Article  MathSciNet  Google Scholar 

  13. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267(6), 1807–1836 (2014)

    Article  MathSciNet  Google Scholar 

  14. Brasco, L., Parini, E.: The second eigenvalue of the fractional \(p\)-Laplacian. Adv. Calc. Var. 9(4), 323–355 (2016)

    Article  MathSciNet  Google Scholar 

  15. Brasco, L., Lindgren, E., Schikorra, A.: Higher Hölder regularity for the fractional \(p\)-Laplacian in the superquadratic case. Adv. Math. 338, 782–846 (2018)

    Article  MathSciNet  Google Scholar 

  16. Brasco, L., Lindgren, E.: Higher Sobolev regularity for the fractional \(p\)-Laplace equation in the superquadratic case. Adv. Math. 304, 300–354 (2017)

    Article  MathSciNet  Google Scholar 

  17. Cozzi, Matteo: Fractional De Giorgi classes and applications to nonlocal regularity theory. In: Contemporary research in elliptic PDEs and related topics, volume 33 of Springer INdAM Ser., pages 277–299. Springer, Cham, (2019)

  18. Chaker, J., Kassmann, M.: Nonlocal operators with singular anisotropic kernels. Comm. Partial Differential Equations 45(1), 1–31 (2020)

    Article  MathSciNet  Google Scholar 

  19. Kassmann, M., Schwab, R.W.: Regularity results for nonlocal parabolic equations. Riv. Math. Univ. Parma (N.S.) 5(1), 183–212 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Caffarelli, L., Chan, C.H., Vasseur, A.: Regularity theory for parabolic nonlinear integral operators. J. Amer. Math. Soc. 24(3), 849–869 (2011)

    Article  MathSciNet  Google Scholar 

  21. Fernández-Real, X., Ros-Oton, X.: Boundary regularity for the fractional heat equation. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 110(1), 49–64 (2016)

    Article  MathSciNet  Google Scholar 

  22. Bonforte, M., Sire, Y., Vázquez, J.L.: Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)

    Article  MathSciNet  Google Scholar 

  23. Strömqvist, Martin: Harnack’s inequality for parabolic nonlocal equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(6), 1709–1745 (2019)

  24. Kim, Y.-C.: Nonlocal Harnack inequalities for nonlocal heat equations. J. Differential Equations 267(11), 6691–6757 (2019)

    Article  MathSciNet  Google Scholar 

  25. Juan Luis Vázquez: The Dirichlet problem for the fractional \(p\)-Laplacian evolution equation. J. Differential Equations 260(7), 6038–6056 (2016)

  26. Mazón, J.M., Rossi, J.D., Toledo, J.: Fractional \(p\)-Laplacian evolution equations. J. Math. Pures Appl. (9) 105(6), 810–844 (2016)

    Article  MathSciNet  Google Scholar 

  27. Strömqvist, M.: Local boundedness of solutions to non-local parabolic equations modeled on the fractional \(p\)-Laplacian. J. Differential Equations 266(12), 7948–7979 (2019)

    Article  MathSciNet  Google Scholar 

  28. Brasco, Lorenzo, Lindgren, Erik, Strömqvist, Martin: Continuity of solutions to a nonlinear fractional diffusion equation. arXiv e-prints, page arXiv:1907.00910, (Jul 2019)

  29. Hynd, R., Lindgren, E.: Hölder estimates and large time behavior for a nonlocal doubly nonlinear evolution. Anal. PDE 9(6), 1447–1482 (2016)

    Article  MathSciNet  Google Scholar 

  30. Hynd, Ryan, Lindgren, Erik: A doubly nonlinear evolution for the optimal Poincaré inequality. Calc. Var. Partial Differential Equations, 55(4):Art. 100, 22, (2016)

  31. Hynd, R., Lindgren, E.: Lipschitz regularity for a homogeneous doubly nonlinear PDE. SIAM J. Math. Anal. 51(4), 3606–3624 (2019)

    Article  MathSciNet  Google Scholar 

  32. Bartł omiej Dyda and Moritz Kassmann: On weighted Poincaré inequalities. Ann. Acad. Sci. Fenn. Math. 38(2), 721–726 (2013)

  33. DiBenedetto, E.: Degenerate parabolic equations. Universitext. Springer-Verlag, New York (1993)

    Book  Google Scholar 

  34. Kinnunen, J., Lindqvist, P.: Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation. Ann. Mat. Pura Appl. (4) 185(3), 411–435 (2006)

    Article  MathSciNet  Google Scholar 

  35. Bombieri, E., Giusti, E.: Harnack‘s inequality for elliptic differential equations on minimal surfaces. Invent. Math. 15, 24–46 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.B. is supported in part by SERB Matrix grant MTR/2018/000267 and by Department of Atomic Energy, Government of India, under project no. 12-R & D-TFR-5.01-0520. P.G. and J.K. are supported by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnid Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we prove Lemma 2.9. To this end, we establish the following auxiliary lemmas. Throughout this section, we assume \(p>1\).

Lemma 6.1

Let \(f,g\in C^1([a,b])\). Then

$$\begin{aligned} \frac{f(b)-f(a)}{b-a}+\Big |\frac{g(b)-g(a)}{b-a}\Big |^p\le \max _{t\in [a,b]}\big [f'(t)+|g'(t)|^p\big ]. \end{aligned}$$

Proof

Suppose the result does not hold, then by contradiction, we get

$$\begin{aligned} \frac{f(b)-f(a)}{b-a}+\Big |\frac{g(b)-g(a)}{b-a}\Big |^p>f'(t)+|g'(t)|^p, \end{aligned}$$

for all \(t\in [a,b]\). Integrating over a to b, we obtain

$$\begin{aligned} \Big |\frac{g(b)-g(a)}{b-a}\Big |^p>\frac{1}{b-a}\int _{a}^{b}|g'(t)|^p\,dt, \end{aligned}$$

which contradicts Jensen’s inequality. \(\square \)

Lemma 6.2

Let \(a,b>0\), \(0<\epsilon <p-1\). Then we have

$$\begin{aligned} |b-a|^{p-2}(b-a)(a^{-\epsilon }-b^{-\epsilon })\ge \zeta (\epsilon )\Big |b^\frac{p-\epsilon -1}{p}-a^\frac{p-\epsilon -1}{p}\Big |^p, \end{aligned}$$

where \(\zeta (\epsilon )=\frac{p^p\epsilon }{(p-\epsilon -1)^p}\). Moreover, if \(0<p-\epsilon -1<1\), then we may choose \(\zeta (\epsilon )=\frac{p^p\epsilon }{p-\epsilon -1}\).

Proof

Let \(0<\epsilon <p-1\) and \(\zeta (\epsilon )=\frac{p^p\epsilon }{(p-\epsilon -1)^p}\). Let \(f(t)=\frac{t^{-\epsilon }}{\zeta (\epsilon )}\) and \(g(t)=t^\frac{p-\epsilon -1}{p}\). By Lemma 6.1, we have

$$\begin{aligned} \frac{1}{\zeta (\epsilon )}\frac{b^{-\epsilon }-a^{-\epsilon }}{b-a}+\Big |\frac{b^\frac{p-\epsilon -1}{p}-a^\frac{p-\epsilon -1}{p}}{b-a}\Big |^p\le 0. \end{aligned}$$

If \(b\ge a\), multiplying by \((b-a)^p\), we obtain

$$\begin{aligned} (b-a)^{p-1}(a^{-\epsilon }-b^{-\epsilon })\ge \zeta (\epsilon )\big |b^\frac{p-\epsilon -1}{p}-a^\frac{p-\epsilon -1}{p}\big |^p. \end{aligned}$$
(6.1)

If \(b<a\), interchanging a and b, the Lemma follows. If \(0<p-\epsilon -1<1\), then we have \(0<(p-\epsilon -1)^p<p-\epsilon -1\), therefore \(\zeta (\epsilon )\ge \frac{p^p\epsilon }{p-\epsilon -1}\) and (6.1) implies

$$\begin{aligned} (b-a)^{p-1}(a^{-\epsilon }-b^{-\epsilon })\ge \frac{p^p\epsilon }{p-\epsilon -1}\Big |b^\frac{p-\epsilon -1}{p}-a^\frac{p-\epsilon -1}{p}\Big |^p. \end{aligned}$$

Hence the claim follows with \(\zeta (\epsilon )=\frac{p^p\epsilon }{p-\epsilon -1}\) when \(0<p-\epsilon -1<1\). \(\square \)

1.1 Proof of Lemma 2.9

We denote the left-hand and right-hand sides of (2.3) by L.H.S and R.H.S, respectively. Let \(\zeta _1(\epsilon )=\frac{\zeta (\epsilon )}{c(p)}\) and \(\zeta _2(\epsilon )=\zeta (\epsilon )+1+\frac{1}{\epsilon ^{p-1}}\). Then \(\zeta _1(\epsilon )-\zeta _2(\epsilon )<-1\) since \(C(p)>1\) (to be finally chosen appropriately).

Case 1. If \(\tau _1=\tau _2=0\), then (2.3) holds trivially.

Case 2. If \(\tau _1>0\) and \(\tau _2=0\). In this case, we note that if \(b>a\), then

$$\begin{aligned} \text {L.H.S}=|b-a|^{p-2}(b-a)(\tau _1^{p}a^{-\epsilon }-\tau _2^{p}b^{-\epsilon })=(b-a)^{p-1}\tau _1^{p}a^{-\epsilon } \end{aligned}$$

and

$$\begin{aligned} \text {R.H.S}&=\zeta _1(\epsilon )\tau _1^{p}a^{p-\epsilon -1}-\zeta _2(\epsilon )\tau _1^{p}(b^{p-\epsilon -1}+a^{p-\epsilon -1})\\&=(\zeta _1(\epsilon )-\zeta _2(\epsilon ))\tau _1^{p}a^{p-\epsilon -1}-\zeta _2(\epsilon )\tau _1^{p}b^{p-\epsilon -1}. \end{aligned}$$

Now L.H.S is positive and since \(\zeta _1(\epsilon )-\zeta _2(\epsilon )<0\) and \(\zeta _2(\epsilon )>0\), the R.H.S is negative. Therefore, we have L.H.S \(\ge \) R.H.S. On the other hand if \(b\le a\), then

$$\begin{aligned} \text {L.H.S}&=-(a-b)^{p-1}\tau _1^{p}a^{-\epsilon }\ge -\tau _1^{p}a^{p-\epsilon -1}, \end{aligned}$$

and since \(\zeta _1(\epsilon )-\zeta _2(\epsilon )<-1\) and \(\zeta _2(\epsilon )>0\), we have

$$\begin{aligned} \text {R.H.S}=(\zeta _1(\epsilon )-\zeta _2(\epsilon ))\tau _1^{p}a^{p-\epsilon -1}-\zeta _2(\epsilon )\tau _1^{p}b^{p-\epsilon -1} <-\tau _1^{p}a^{p-\epsilon -1} \le \text {L.H.S}. \end{aligned}$$

Case 3. If \(\tau _1=0\) and \(\tau _2>0\). Then we have

$$\begin{aligned} \text {L.H.S}=-|b-a|^{p-2}(b-a)\tau _2^{p}b^{-\epsilon }, \end{aligned}$$

and

$$\begin{aligned} \text {R.H.S}&=(\zeta _1(\epsilon )-\zeta _2(\epsilon ))\tau _2^{p}b^{p-\epsilon -1}-\zeta _2(\epsilon )\tau _2^{p}a^{p-\epsilon -1}. \end{aligned}$$

If \(b>a\), then

$$\begin{aligned} \text {L.H.S}=-(b-a)^{p-1}\tau _2^{p}b^{-\epsilon }\ge -\tau _2^{p}b^{p-\epsilon -1}, \end{aligned}$$

and since \(\zeta _1(\epsilon )-\zeta _2(\epsilon )<-1\) and \(\zeta _2(\epsilon )>0\), we have

$$\begin{aligned} \text {R.H.S}=(\zeta _1(\epsilon )-\zeta _2(\epsilon ))\tau _2^{p}b^{p-\epsilon -1}-\zeta _2(\epsilon )\tau _2^{p}a^{p-\epsilon -1}\\ <-\tau _2^{p}b^{p-\epsilon -1} \le \text {L.H.S}. \end{aligned}$$

If \(b\le a\), then the L.H.S is nonnegative and the R.H.S is negative. Therefore, we have \(\text {L.H.S}\ge \text {R.H.S}\).

Case 4. Let both \(\tau _1,\tau _2>0\). By symmetry, we may assume that \(b\ge a\). Let \(t=\frac{b}{a}\ge 1\), \(s=\frac{\tau _2}{\tau _1}>0\) and \(\lambda =s^{p}t^{-\epsilon }\). It can be easily seen that the inequality (2.3) is equivalent to the following inequality

$$\begin{aligned} \zeta _1(\epsilon )|s t^\frac{p-\epsilon -1}{p}-1|^p\le (t-1)^{p-1}(1-\lambda )+\zeta _2(\epsilon )|s-1|^p(t^{p-\epsilon -1}+1). \end{aligned}$$
(6.2)

We first estimate the following term.

$$\begin{aligned} |st^\frac{p-\epsilon -1}{p}-1|^p&=|st^\frac{p-\epsilon -1}{p}-t^\frac{p-\epsilon -1}{p}+t^\frac{p-\epsilon -1}{p}-1|^p\\&=|(s-1)t^\frac{p-\epsilon -1}{p}+(t^\frac{p-\epsilon -1}{p}-1)|^p\\&\le 2^{p-1}|s-1|^p t^{p-\epsilon -1}+2^{p-1}|t^\frac{p-\epsilon -1}{p}-1|^p\\&=A+B, \end{aligned}$$

where

$$\begin{aligned} A=2^{p-1}|s-1|^p t^{p-\epsilon -1}\text { and }B=2^{p-1}|t^\frac{p-\epsilon -1}{p}-1|^p. \end{aligned}$$

By Lemma 6.2, we have

$$\begin{aligned} B\le \frac{2^{p-1}(t-1)^{p-1}(1-t^{-\epsilon })}{\zeta (\epsilon )}. \end{aligned}$$

As a consequence, we obtain

$$\begin{aligned} |st^\frac{p-\epsilon -1}{p}-1|^p\le 2^{p-1}|s-1|^p t^{p-\epsilon -1}+\frac{2^{p-1}(t-1)^{p-1}(1-t^{-\epsilon })}{\zeta (\epsilon )}. \end{aligned}$$

We observe that

$$\begin{aligned} 1-t^{-\epsilon }&=1-\lambda +\lambda -t^{-\epsilon } =1-\lambda +(s^p-1)t^{-\epsilon }\\&=1-\lambda +|s-1|^p t^{-\epsilon }+(s^p-1-|s-1|^p)t^{-\epsilon }. \end{aligned}$$

Therefore, we get

$$\begin{aligned} \begin{aligned}&|s t^\frac{p-\epsilon -1}{p}-1|^p \le 2^{p-1}\big (1+\frac{1}{\zeta (\epsilon )}\big )|s-1|^p t^{p-\epsilon -1}\\&\qquad +\frac{2^{p-1}}{\zeta (\epsilon )}(t-1)^{p-1}(1-\lambda )+\frac{2^{p-1}}{\zeta (\epsilon )}(t-1)^{p-1}(s^p-1-|s-1|^p)t^{-\epsilon }. \end{aligned} \end{aligned}$$
(6.3)

Next we estimate the term \(T=\frac{2^{p-1}}{\zeta (\epsilon )}(t-1)^{p-1}(s^p-1-|s-1|^p)t^{-\epsilon }\) for different values of t and s.

Case (a). If \(t>1\) and \(s\ge 2\). Then using the fact that \(s\ge 2\), it can be easily seen that there exists constant C(p) large enough such that \(s^p-1-(s-1)^p\le C(p)(s-1)^p\). Therefore, we get

$$\begin{aligned} T\le \frac{C(p)}{\zeta (\epsilon )}|s-1|^p t^{p-\epsilon -1}. \end{aligned}$$
(6.4)

By inserting (6.4) into (6.3), we get

$$\begin{aligned} \begin{aligned} |s t^\frac{p-\epsilon -1}{p}-1|^p\le C(p)\big (1+\frac{1}{\zeta (\epsilon )}\big )|s-1|^p t^{p-\epsilon -1}+\frac{C(p)}{\zeta (\epsilon )}(t-1)^{p-1}(1-\lambda ). \end{aligned} \end{aligned}$$
(6.5)

Case (b). If \(t=1\) or \(0<s\le 1\). Then \(T\le 0\). Hence, we get the estimate in (6.5).

Case (c). If \(t>1\), \(s\in (1,2)\). Let \(r\ge p\) be the nearest integer to p. Again it follows that there exists a positive constant C(p) large enough such that \(s^p-1-|s-1|^p\le C(p)|s-1|\). We have further subcases.

Case (i). If

$$\begin{aligned}t-1<\frac{r 2^{r-1}}{\epsilon }t(s-1).\end{aligned}$$

Note that we can choose C(p) large enough such that \(r 2^{r-1}\le C(p)\). Hence, we have

$$\begin{aligned} T\le \frac{C(p)}{\epsilon ^{p-1}\zeta (\epsilon )}t^{p-\epsilon -1}|s-1|^p. \end{aligned}$$
(6.6)

By inserting (6.6) into (6.3), we get

$$\begin{aligned} |s t^\frac{p-\epsilon -1}{p}-1|^p \le C(p)\Big (1+\frac{1}{\zeta (\epsilon )}\Big (1+\frac{1}{\epsilon ^{p-1}}\Big )\Big )|s-1|^p t^{p-\epsilon -1}+\frac{C(p)}{\zeta (\epsilon )}(t-1)^{p-1}(1-\lambda ). \end{aligned}$$
(6.7)

Case (ii). If

$$\begin{aligned}t-1\ge \frac{r 2^{r-1}}{\epsilon }t(s-1).\end{aligned}$$

Since r is an integer, we observe that

$$\begin{aligned} s^r+s-2=(s-1)(s^{r-1}+s^{r-2}+\cdots +s+2). \end{aligned}$$

By the mean value theorem there exists \(\eta \in (1,t)\) such that \(t^\epsilon -1=\epsilon \eta ^{\epsilon -1}(t-1)\) and so \(\epsilon =\frac{t^\epsilon -1}{\eta ^{\epsilon -1}(t-1)}\). Now, we have

$$\begin{aligned} \frac{s^r+s-2}{t-1}&=\frac{s-1}{t-1}(s^{r-1}+s^{r-2}\cdots +s+2)\\&\le \frac{\epsilon }{r 2^{r-1}t}(s^{r-1}+s^{r-2}+\cdots +s+2)\\&\le \frac{\epsilon }{t} \le \frac{t^\epsilon -1}{t\eta ^{\epsilon -1}(t-1)}, \end{aligned}$$

which gives \(t\eta ^{\epsilon -1}(s^r+s-2)\le t^\epsilon -1\).

Now, the fact \(\epsilon >0\) and \(1<\eta <t\) gives \(t\eta ^{\epsilon -1}>\eta ^\epsilon >1\). Therefore since \(r\ge p\) and \(s>1\), we get \(s^p+s-2<s^r+s-2<t\eta ^{\epsilon -1}(s^r+s-2)\le t^\epsilon -1\). Hence, we have \(s-1\le t^\epsilon -s^p=t^\epsilon (1-\lambda )\). Thus

$$\begin{aligned} T\le \frac{C(p)}{\zeta (\epsilon )}(t-1)^{p-1}(1-\lambda ). \end{aligned}$$
(6.8)

Using (6.8) into (6.3) we get

$$\begin{aligned} |s t^\frac{p-\epsilon -1}{p}-1|^p\le C(p)\big (1+\frac{1}{\zeta (\epsilon )}\big )|s-1|^p t^{p-\epsilon -1}+\frac{C(p)}{\zeta (\epsilon )}(t-1)^{p-1}(1-\lambda ). \end{aligned}$$
(6.9)

Finally from the estimates (6.5), (6.7) and (6.9), we obtain

$$\begin{aligned} \begin{aligned} |st^\frac{p-\epsilon -1}{p}-1|^p\le C(p)\Big (1+\frac{1}{\zeta (\epsilon )}(1+\frac{1}{\epsilon ^{p-1}})\Big )|s-1|^p (t^{p-\epsilon -1}+1)\\+\frac{C(p)}{\zeta (\epsilon )}(t-1)^{p-1}(1-\lambda ). \end{aligned} \end{aligned}$$
(6.10)

Multiplying \(\frac{\zeta (\epsilon )}{C(p)}\) on both sides of (6.10), we obtain

$$\begin{aligned} \frac{\zeta (\epsilon )}{C(p)}|st^\frac{p-\epsilon -1}{p}-1|^p\le \Big (\zeta (\epsilon )+1+\frac{1}{\epsilon ^{p-1}}\Big )|s-1|^p(t^{p-\epsilon -1}+1)+(t-1)^{p-1}(1-\lambda ), \end{aligned}$$

which corresponds to the inequality (6.2). The lemma thus follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Garain, P. & Kinnunen, J. Some local properties of subsolution and supersolutions for a doubly nonlinear nonlocal p-Laplace equation. Annali di Matematica 201, 1717–1751 (2022). https://doi.org/10.1007/s10231-021-01177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01177-4

Keywords

Mathematics Subject Classification

Navigation